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LOSS FACTOR AND RESONANT FREQUENCY OF
VISCOELASTIC SHEAR-DAMPED STRUCTURAL COMPOSITES

by Thomas F. Derby and Jerome E. Ruzicka

ABSTRACT

An investigation is conducted to evaluate the loss factor, resonant
frequency and thermal conductivity characteristics of structural composites
with viscoelastic shear-damping mechanisms. Theoretical solutions and
graphical design data for damping and resonant frequency are developed for
four types of viscoelastic shear-damped structural composites: two-elastic-
element, symmetrical three-elastic-element, unsymmetrical three-elastic-
element and N identical-elastic-laminate configurations. The equations
and design procedures for predicting loss factor and resonant frequency are
verified by the results of experimental measurements made on laboratory
beam specimens. Thermal conductivity characteristics of laminated visco-
elastic shear-damped plates are investigated theoretically and experimentally,
with consideration given to methods for increasing thermal conductivity and
the subsequent effect on structural damping.
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LOSS FACTOR AND RESONANT FREQUENCY OF
VISCOELASTIC SHEAR-DAMPED STRUCTURAL COMPOSITES

by Thomas F. Derby and Jerome E. Ruzicka

Barry Controls
Division of Barry Wright Corporation
Watertown, Massachusetts

SUMMARY

An analysis of the loss factor and resonant frequency characteristics of
viscoelastic shear-damped structural composites has been conducted. The
structural composites considered included two-elastic-element, symmetrical
three-elastic-element, unsymmetrical three-elastic~-element and N identical-
elastic-laminate configurations.

The mathematical relations for loss factor are typically dependent upon
three parameters: the geometrical parameter, the uncoupled shear parameter
and the viscoelastic material loss factor. The resonant frequency analyses
demonstrate the validity of assuming the effective flexural rigidity of the
composite structure equals the real part of the complex flexural rigidity.

Extensive design graphs for the prediction of structure loss factor and
resonant frequency have been developed for wide parameiric variations of the
viscoelastic damping material loss factor and the geometrical and uncoupled
shear parameters. The design procedures presented allow rapid determination
of damping and resonant frequency characteristics without the necessity of an
iteration process. Discussion of a design example demonstrates the applica-
tion of the design procedure.

Laboratory experiments have been performed to verify the theoretical
predictions of loss factor and resonant frequency for a set of 44 different beam
specimens that employed aluminum and/or fibre-glass structural materials. A
total of 226 loss factor and 164 resonant frequency measurements were made at
various free-free bending modes of the beam specimens. A statistical analysis
of this data compared to the theoretical values of loss factor and resonant fre-
qguency indicated that the loss factor difference had a mean value of 1.5 percent
and a standard deviation of approximately 25 percent, whereas the resonant fre-
quency difference had a mean value of 0.7 percent and a standard deviation of
approximately 9 percent. It is concluded that the theory and design procedures
for loss factor and resonant frequency is satisfactory within accepted engineer-
ing practice.

Methods for increasing the thermal conductivity of viscoelastic shear-
damped laminated plates have been evaluated. Addition of a high thermal
conductivity material to the viscoelastic material increases the thermal conduc-
tivity of the structural composite; however, it appears that this can be done
only at the expense of structural damping and the peel strength of the laminated
plate.



SECTION 1: INTRODUCTION

Design procedures and graphs have previously been developed to
predict the damping properties of structural composites comprised of two
elastic elements separated by a viscoelastic layer. The results of that study
are reported in NASA Contract Report CR~-742, "Damping of Structural
Composites with Viscoelastic Shear-Damping Mechanisms" [Ref., 1]. The
study reported herein results in design procedures and graphs to determine the
damping properties and resonant frequencies of structural composites comprised
of two elastic elements, three elastic elements and any number of identical
elastic laminates separated by thin layers of viscoelastic material. The
analyses for these structures, mainly contained in the appendices, are based
on, and are an extension of, existing theoretical analyses [Ref. 2-8]. The
measure of damping used in this report, as well as in the previous report, is
the structure loss factor, which may be related to other measures of damping

such as the logarithmic decrement and the fraction of critical damping [Ref. 2

and 9].

The design procedures developed herein are easier to use than those
developed in Reference 1 in that the structure loss factor can be read directly
from the design graphs and there is no iteration process required. The major
difficulty in predicting structure loss factor has been in determining one of the
parameters in the expression for the loss factor; namely, the shear parameter X.
Tor the present study, it has been determined that, in the functional relation-
ship for the structure loss factor 1, the shear parameter X may be replaced

by the uncoupled shear parameter X0 , as follows:

n=nB, X, Y) (1)

where B is the loss factor of the viscoelastic shear-damping material, Xo is

defined as the uncoupled shear parameter, and Y is defined as the geometrical

parameter.



The damping material loss factor B is the ratio of the imaginary and

real components of the complex shear modulus G* = G’ +iG", as follows
B=a/G’ (2)

where G” and G’ are the loss modulus and storage modulus of the visco-
elastic material, respectively. The uncoupled shear parameter Xo is similar

to the shear parameter X used previously [Ref. 1]; however, its dependence
on the properties of the viscoelastic material and the frequency of vibration is

considerably simpler. The uncoupled shear parameter Xo can be expressed
as follows

x, = cla/t) (3)

where C is defined as the shear parameter coefficient which depends on the
cross-section geometry of the structure and the modulus of elasticity of the
elastic elements, but is independent of the properties of the viscoelastic
material and the frequency of vibration f. The geometrical parameter Y is
also only a function of the cross-section geometry of the structure and modulus

of elasticity, and may be expressed as follows [Ref. 1]

Y = %;3 -1 (4)
where (EI)O is the flexural rigidity of the structural composite when its elastic
members are uncoupled and (EI), is the flexural rigidity of the structural
composite when its elastic members are completely coupled. The geometrical
parameter has been determined and yraphically displayed for a wide variety of
cross-sections of the type of structural composites considered in this
report [Ref. 1].

The present investigation is concerned with the development of proce-
dures and graphical data useful in the design of viscoelastic shear-damped
composite structural beams and the experimental verification of theorteical
predictions of structure loss factor, resonant frequency, and steady-state

frequency response. Analyses and experiments have been limited to structural



composite designs which incorporate thin layers of relatively soft viscoelastic

damping material; consequently, the results of the studies are particularly

applicable to structural composites that incorporate thin self-bonding adhesive

damping layers. The investigation encompasses the following studies:

(1)
(2)
(3)

(4)

(5)

Theoretical analysis of structure loss factor.
Theoretical analysis of structure resonant frequency.

Development of design procedures and graphs for predicting the

structure loss factors and resonant frequencies.

Comparison of theoretical to experimental results pertaining to
structure loss factor, resonant frequency, and transmissibility of

various structural composites.

Thermal conductivity of laminated elastic and viscoelastic plates.

These five studies are discussed, respectively, in the following sections of

the report.




SECTION 2: THEORETICAL LOSS FACTOR ANALYSES

With one exception, the method of calculating theoretical structure
loss factors employed herein follows fairly closely the analysis presented in
Reference 2(pp. 55-61). The one exception is for structures having visco-
elastic layers not parallel to the neutral plane of bending,and is discussed in
the last subsection of this section. For composite structural beams comprised
of elastic elements separated by layers of viscoelastic material parallel to the

neutral plane of bending, the following general discussion is applicable.
General Loss Factor Equations

The structure loss factor m is defined as the ratio of the imaginary

part of the complex flexural rigidity to the real part, as follows
_ Im{(ED*]
M= Rel(ED)* ] (5)
where (EI)* denotes the complex flexural rigidity of the structural composite.

The complex flexural rigidity is obtained by considering the structural composite

to be in pure bending so that

0
M = (ED* 5% (6)

, , d
where M is the applied moment and -a—% is the resulting curvature of the

beam. The steady-state response of -aa—ﬁ to the input M = M, eiwt is

) 3 i -6
2o (2} ”

where the phase angle 8 indicates the presence of damping.

Evaluation of the structure loss factor 7 by use of Equation (5)
requires the determination of the complex flexural rigidity (EI)*. The method
of determining (EI)* is to first assume it is a real number by considering the

shear modulus of the viscoelastic material to be a real number (i. e., being



purely elastic). When the expression for flexural rigidity is obtained, the
shear modulus of the viscoelastic material G is replaced by

G* = G’ (1 +iB) (8)

where G’ is the storage modulus (real part) of the shear modulus and B is

the loss factor of the viscoelastic material.

Consider an element of a beam in pure bending as shown in Figures 1
and 2. Two assumptions are made. The first is that all of the elastic
elements undergo the same curvature 2_22( . The second is that the moments
and extensional forces acting on the viscoelastic layers are negligible
compared to those acting on the elastic elements; i. e., the elastic elements
are considerably stiffer in extension than the viscoelastic material. The

strain in each element is also shown in Figure 1.

The total bending moment can be considered as the sums of the bending
moments on each elastic element. The bending moment on each elastic element
is composed of the moment required to bend the element about its own neutral
plane plus the net extensional force on the element times the distance from the

element's neutral plane to the reference composite neutral plane, as follows

oo
X8

M = (EI)* = EMii + ZFihi ‘ (9)

where Mii is the moment exerted by the forces on the ith element about its
own neutral plane, Fi is the net extensional force on the ith element, and
hi is the distance from the neutral plane of the ith element to the neutral

plane of the composite beam at which the extensional strain is zero.

Since all elastic elements are assumed to undergo the same

curvature SJ};, the sum of the individual moments is

=M, = 2D 152 = (e, §2 (10)

0 0%

where (EI)o is the sum of the individual elastic element flexural rigidities

and is defined as the uncoupled flexural rigidity of the structural composite.




It is shown in Appendix A that

_ 2 I}
EPihi = (EKiéi )Z*(ax) (11)

where

Ki = EiAi = extensional stiffness of the ith element

61 = distance from the ith element to the composite neutral plane
for the case where G =« (i.e., there is no shearing)

Z* = complex coupling parameter, defined by Equation (A-16).

The geometrical parameter Y may be defined as follows (,Reference 1, p. 8)

_ (EDe _, _ (ED)
Y= (EDe LT (EDe (12)

where (EI)o, (EI), and (EI);r represent the uncoupled, coupled and transfer
flexural rigidities of the composite structure, respectively. Since the
transfer flexural rigidity (EI); is given by

(EDy = Z)Kiﬁiz (13)

Equations (9) through (13) may be combined to give
(ED)* = (EDo[1 +2Z*Y] (14)

It should be noted that when the shear modulus of the viscoelastic material G*
is a complex number, the coupling parameter Z* and the flexural rigidity (EI)*
are also complex numbers. From Equations (5) and (14), the following -
equation for structure loss factor is obtained

__Im(Z%)Y (15)
M= 1T+Re(Z¥Y



Specific Equations for Four Types of Structural Composites

The following is a more detailed discussion pertaining to the loss
factors of structural composites comprised of: (1) two elastic elements;
(2) a symmetrical arrangement of three elastic elements; (3) an unsymmetrical
arrangement of three elastic elements; and (4) any number N of identical
elastic laminates. These four types of structural composites are illustrated

in general in Figure 3 and particular examples are shown in Figures 4 to 7.

Using Equation (15), the only two quantities required to calculate the
structure loss factor m are the geometrical parameter Y and the complex
coupling parameter Z*, The equations and graphical displays of the geomet-
rical parameter Y for a wide variety of cross sections of the four types of
structural composites indicated above can be found in Reference 1. The
equations for the complex coupling parameter Z* are derived in Appendix A
for the first three types and in Appendix B for the fourth type of structural

composites indicated above.

Two-Elastic-Element Structural Composites. - The complex coupling

parameter for two-elastic-element structural composites is given by

Equation (A-41) as

X*

e (16)
where X* is defined as the complex shear parameter and is given by
Equation (A-38) as

Ki +K2 b G*

* =
¥ TR H P (17)

where Ki = EiAi = -extensional stiffness of the ith element [ see Figure 3(a)];
b and HV are the width and thickness, respectively, of the viscoelastic
layer; G* is the complex shear modulus of the viscoelastic material [see
Equation (8)]; and p is the wave number (p = 20%/X, where X\ is the wave
length) of the particular flexural vibration being considered. A shear

parameter X is defined as the real part of X*; that is X = Re(X*). Combining




Equations (8) and (17) gives

X* = X(1 +1B) - (18)

Combining Equations (16) and (18), the complex coupling parameter
can be written as

1 2 1
1+X+/3 xﬁ

(1+3%+6°

z* 1.2, .2
(1+x) +8

(19)

The real part of Z* is the coupling parameter Z, as given in Equation (32) of
Reference 1., Using Equation (19) with the definition of the structure loss
factor as given by Equation (15} results in the following relation

BXY

T 1 Xy +2) +(1+BIC(Y+1) (20)

which is identical to the expression given by Ungar in Equation (4.2) of

Reference 3 and also to the expression given in Reference 1 as Equation (27).

Symmetrical Three-Elastic-Element Structural Composites. - For the

case of a symmetrical three-elastic-element composite structure, the
equation for the complex coupling parameter Z* as a function of the complex

shear parameter X* is identical to the expression given by Equation (16) for

the two-elastic-element case. However, the complex shear parameter has a

slightly different definition, given by Equation (A-46) as

bG*
* =
X G H % va (21)

where K1 = E1 A, = extensional stiffness of element 1 [see Figure 3(b)] and the
other terms have the same definition as for the two-elastic-element case. With
this slight change in the definition of the shear parameter all of the discussion
in Reference 1 is applicable to the symmetrical three-elastic-element structures.
Of course, the definitions for other parameters such as Y and (EI), will have
to be those applicable to the symmetrital three-elastic-element structure.



Unsymmetrical Three-Elastic-Element Structural Composites, - For the

case of an unsymmetrical arrangement of a three-elastic-element structure,
the expression for the structural loss factor cannot be cast in the form of the
two-elastic~element structure., Appendix A provides an analysis of an un-
symmetrical three-elastic—-element structure having two of the elements
identical. For this case, the expression for Z* given by Equation (A-55) is a

function of three parameters, as follows
Z* = f(diz , Kaz, X*) (22)

where diz = d1/dz, Kiz = K1/Kz = E, A /Es As [see Figure 3(c)], and X* is the
same shear parameter as was defined for the symmetrical three-elastic-element
structure, as given by Equation (21). The only difference in calculating Z*
for the unsymmetrical case is a slightly more complicated expression and two
additional parameters. Because of the additional two parameters, the design
procedures for the two-elastic-element and the symmetrical three-elastic-
element cases are not applicable for the unsymmetrical three-elastic-element
case. Appendix G presents an analysis comparing the loss factor of the

symmetrical and the unsymmetrical three-elastic-element structural components.

N Identical-Elastic-Laminate Structural Composites. - For the case

of N identical elastic laminates, the solution for the loss factor 7 is more
complicated in that it requires the solution of N-1 (for N odd) or N (for

N even) linear simultaneous equations. The equations to be solved are

developed in Appendix B.
Definition of the Uncoupled Shear Parameter

As stated previously, the uncoupled shear parameter X, is one of
three parameters (8, Y and Xy that completely define the structure loss

factor 7. The following analysis defines the uncoupled shear parameter Xo

and relates it to the shear parameter X.

For all of the structures considered in this investigation, there is

defined a complex shear parameter of the form

X* = X(1 + iB) (23)

10

9



where B is the loss factor of the viscoelastic material and X is defined as
a shear parameter and has the general form

bG'’

X=pp =
Kva

(24)

where b is the cross-sectional length of the viscoelastic layer, G’ is the
real part of the complex shear modulus of the viscoelastic material, K is an
extensional stiffness or a modified extensional stiffness of an elastic element,
H,, is the thickness of the viscoelastic layer(s) and p is the wave number for
the flexural wave shape of the composite structural beam. If the wavelength of
the flexural vibration wave A is known, the wave number p is simply
determined from p = 2m/A. However, the structural designer is frequently
interested in predicting the variation of the structure loss factor 77 as a
function of the frequency of vibration f so that the degree of damping at the

various structural resonances can be established.

For a purely elastic structure the wave number p is related to the

frequency of vibration f as follows

2

p = 2nf b

3(ED (25)

where w is the weight per unit length, g is the gravitational acceleration

constant and (EI) is the flexural rigidity of the structure. As an extension of
the above equation to apply to viscoelastic shear-damped structures, (EI) is
redefined as an effective flexural rigidity (EI)r of the composite structure. If
it is assumed that the effective flexural rigidity (]E:I)r is equal to the real part

of the complex flexural rigidity as written in Equation (14)
(ED), = Rel(ED*] = (EDo [1 + Re(Z*)Y] (26)

then the loss factor expression of Ungar [Ref. 3] is equivalent to that obtained
by DiTaranto [Ref. 41. This equivalence is shown in Appendix D. This
assumption is also supported by the analyses to determine resonant frequencies
(see Section 3) and subsequent experimental confirmation of the design

procedures developed based on this assumption.

11



The effective flexural rigidity (EI); has a value between the completely

uncoupled flexural rigidity (EI) o and the completely coupled flexural rigidity
(El) . as follows

(EDo < (ED, < (EDw (27)

where, from Equation (12) (El)eo is given by
(ED)e = (EI)o (Y+1) (28)

The degree of coupling is indicated by the value of Re(Z*) so that Z = Re(Z*)
is .defined as the coupling parameter which has values bounded between zero
and unity, as follows

0 < Re(Z*¥) <1 (29)

Using the definition Z = Re(Z*), and Equations (24), (25), and (26), the
following relation may be written

= [F & J@EJ(%’)‘/‘HZY (30)

The quantity inbrackets is defined as a shear parameter coefficient C. An
uncoupled shear parameter Xo is defined as the value of X when Z =0,

Now the shear parameter X is defined as

X =Xo‘/l +ZY (31a)

- c(%l) (31b)

_Jg b EI
C =% KHVV(W)o (31c)

These equations are basic in the development of the design procedures and
graphs as discussed in Section 4.

12




Symmetrical Three-Elastic-Element Structural Composites
Having Viscoelastic Layers not Parallel to the Neutral Plane of Bending

For the general case of a symmetrical arrangement of a three-elastic-
element structure for which the outside elements are not separated from the
inside element by a layer of viscoelastic material parallel to the neutral plane
of bending but have other geometries (structural composites illustrated in
Figure 5(f)-(h) and in Figure 6), the preceding analyses do not apply. Ungar
used a strain energy approach to solve for the loss factors of more general
structural composites (Ref. 3). Starting with Ungar's Equation (1.8) in
Reference 3, Appendix E derives the loss factor expression for the general case
of symmetrical three-elastic-element structural composites. This analysis
shows that the only difference between this case and the three-elastic-element
structure incorporating viscoelastic layers parallel to the neutral plane of
bending is in the definition of the length b. This is not an unexpected result
since Ungar found the same to be true for the two-elastic-element structure
[Ref. 3]. When the elastic elements are separated by viscoelastic layers.
parallel to the neutral plane of bending, the length b is the width of the layers.
A more general definition of the length b is the cross-sectional length of one

of the two symmetrical viscoelastic layers experiencing shear deformation.
This definition of b is more clearly illustrated in the table on the following

page which gives the value of b for each of the structural composite cross-

sections shown in Figures 5 and 6.

13



STRUCTURAL CONFIGURATION

VALUES OF LENGTH b

Fig. 5(a)~-(e)

Fig. 5(f) perimeter of area A,
Fig. 5(g) 2 (perimeter of area A;)
Fig. 5(h) 4(A+Hy)

Fig. 6(a)-(c) 4B

Fig. 6(d) B+2H

Fig. 6(e) A+2H

Fig. 6(f) 2 B

Fig. 6(g) (1+7)B

Fig. 6(h) A

Fig. 6(i) 2A

14




SECTION 3: THEORETICAL RESONANT FREQUENCY ANALYSES

An expression for the resonant frequencies of two-elastic-element

structural composites was given by Equation (34) of Reference 1 as
f./fo =~ 1+ 2ZY (32)

where

f, = resonant frequency

f. = a reference frequency which is determined by the
beam or plate natural frequency equation using

(EI), as the flexural rigidity
Z = Re(Z*) = coupling parameter

Y = geometrical parameter

This equation was derived by assuming that the damped resonant frequencies
could be determined by the appropriate undamped natural frequency formula
using the real part of the complex flexural rigidity as an effective flexural
rigidity.

For all of the types of structural composites considered in this report,
the real part of the complex flexural rigidity, and hence, the effective flexural

rigidity is given by Equation (26) as
(ED, = (EDo (1 + ZY) (33)

For flexural vibrations of beams and plates, the natural frequency varies as
the square root of the flexural rigidity so that Equation (32) is obtained from
Equation (33) and is, therefore, applicable to all of the structural composites
considered herein. Of course, the appropriate values of (EI),, ¥, and Z

must be used for the particular structure being considered. Specific equations
for the uncoupled flexural rigidity (EI)o and geometrical parameter Y for many
structural composites are given in Reference 1, The general definition of Z*

from which Z (the real part of Z*) can be obtained is given in Appendix A as

15



Equation (A-16). Also specific equations for Z are given in Section 4 for two-
elastic-element, symmetrical three-elastic-element, unsymmetrical three-

elastic element, and N identical-elastic-laminate structures.

Natural Frequency Expression of DiTaranto

DiTaranto [Ref. 5] has obtained an expression for the natural fre-
quencies of laminated beams (two-elastic-element structures comprised of
solid structural sheets)which he claims to be exact for simply supported beams
and postulates that it is a good approximation for other end conditions. The

expression for natural frequencies is given as

2 B, + Bs + K 6%

wi® = Ao 5 (Ref. 5, Eq. II1-4) (34)
where
&[Ao"‘R'LS(l"'Bz)] (Ref
_ . 5, Eq. III-5) 35
T N 2SR+ TR+ B (35)
and it is assumed that*
an
Ay = = (36)

which is tHe square of the wave number P« Changing from DiTaranto's

notation to our notation

w

p= o= 0
bG’

R = + = (EI 37,
K H, B + Bs = (El)o (37)

* Tor simply supported beams this relation was found to be exact.

16



where (EI)p is.the uncoupled flexural rigidity, d is the distance between the
centers of the two elastic laminates, w is the weight per unit length of the beam,
g is the acceleration of gravity, b is the width of the viscoelastic layer, G’

is the real part of the viscoelastic shear modulus, Hv is the thickness of the
viscoelastic layer, and K1 and K; are the extensional stiffnesses (Ki = EiAi
where Et is the. elastic modulus and Ai is the cross sectional area of the

iﬂ’l element) of the top and bottom elastic elements, respectively.

Noting that

KRé®_ __ Kkd = v
S(B. + Ba) (K + K2 ) (ET)o
Ao [BrtBs - 2/a [(EDg o
?1471 T P o 0 = I (38)

!

RS _K+k _DbG _ ¢
N KK H,p

Equations III-4 and III-5 of Reference 5 can be rewritten as

h= fo\/l+ (sa)y (39)

where

x[1+x(1+8%))

S¢= T 5%+ + 5 Z (40)

which is recognized as the coupling parameter for two-elastic-element

structures. Making this substitution in Equation (39) results in Equation (32).

17



Theoretical Results of Snowdon

Snowdon [Ref. 6] has studied the response of internally damped
beams by replacing Young's Modulus by a complex Young's Modulus in the
equations of motion for elastic beams. The theoretical analysis of composite
elastic and viscoelastic structures assumes that the composite structure acts
essentially as a solid structure having a complex flexural rigidity obtained
from an analysis of the composite structure. Under this assumption, the
results of Snowdon are applicable to the composite structures under study.
Snowdon has shown that for beams with the same real part of the complex
flexural rigidity but with loss factors of 0.01 and 0.1, the resonant fre-
guencies are practically the same. A loss factor of 0.01 is representative of
the internal damping possessed by a metal beam. A loss factor of 0.1 is
representative of viscoelastic shear-damped composite structures. Snowdon also
obtained results for a loss factor of 1.0 and the resonant frequencies were, in
general, not the same as for the lower loss factors, especially in the higher
modes. However, this value of loss factor is considered to be outside the
range of practical interest. These results support the assumption that the
resonant frequencies of viscoelastic shear-damped structures can be obtained
from the undamped frequency equations by replacing the flexural rigidity by

the real part of the complex flexural rigidity.
Lumped Parameter Model Studies

As part of the resonant frequency analyses, single-degree-of-freedom
lumped parameter systems were studied since exact theoretical results are
known for these systems. The single-degree-of-freedom system is represented
by a lumped mass m and a complex stiffness K* as shown by the sketch on
the following page. Vibration excitation of the system is the harmonic motion a

of the foundation and the response is the harmonic motion x of the mass.
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The equation of motion is

mX = ~ K* (x-a) (41)

wt 1wt—p)t

For the excitation a = a,:,e:L , the response is x = xge . So that
Xo -l _ __KX 42
=€ T rema” (42)
Writing K* as a complex quantity
K* =Re (K*) (1 + i€) (43)

and defining a reference frequency wp in terms of the real part of the complex

stiffness K*, as follows

2 _ Re(K*)
Wp = Th (44)
Equation (42) becomes
X —ip _ _ 1+ i€ (45)
Ao

(¥ V24 ¢ o
l(wR)+1E
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and therefore

Xo =[ 1+€ ];5 (46)
o L{1- (2%} + ¢
“R
—e (&2
-1 C')R
¢ = tan AR (47)
“r

, , Xo .
To solve for the resonant frequency, take the derivative of Eo- with respect to

w and set the result to zero. Defining

d
Q= _ﬁ (48)
dw
and
_de
E = o (49)

The resonant frequency equation can be written as

201+ €%)Q+e€w E o
3 2

R

[(1+€®) Q +¢ wRE] .

In general the quantities Wpo €, €, and E are all functions of frequency w
so that the solution of Equation (50) can be quite difficult. It is interesting
to note, however, that if € is not a function of frequency (i.e., E = 0), then
W= Wr satisfies the resonant frequency equation. In other words, if the
ratio of the imaginary part to the real part of the complex stiffness is constant
with respect to frequency, then the resonant frequency can be obtained from
the undamped frequency equation by replacing the stiffness by the real part of

the complex stiffness,
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The case of relaxation type damping (elastically coupled viscous
damping) was studied in some detail since this lumped parameter model has
certain similarities with viscoelastic shear-damped beams [Ref. 7]. A sketch
of this system is shown below where N is a dimensionless stiffness ratio
(which is comparable to the geometrical parameter Y for viscoelastic shear-
damped structural composites).

m
[

NUQ

The undamped natural frequency o is defined as

k

w°2= k/m . (51)

and the fraction of critical damping ( is

C

C = Zoom (52)
For this system, use of Equation (44) gives
Lot FNCRPE®
R ™4 (_21\_11;)2 ez_o)z 0 (53)
and
.
€ 28 wo (54)

= 202 w
1 (v 1) (B 22
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For this system, € is a function of frequency so that it cannot be expected
that wR
{ approaches zero, wR approaches wo and, as € approaches infinity, wR

will be the exact resonant frequency. However, it can be seen that as

approaches JN_+T ws, which are the correct values for the resonant frequency
for this system [Ref. 8 J. Also, for on.e intermediate value of £, the slope of

€ is equal to zero (i.e., E =0) so that, at this value of , wR is the correct

value for the resonant frequency. Therefore wR approaches the correct asymp-
totes as £ approaches zero or infinity, and has one correct value between the

asymptotes. The exact resonant frequency is calculated by substituting the

expression for wp given by Equation (53) into Equation (50) and solving for
w
Wo
Equation (53) and solving for T, -

. The approximate resonanEoigequency is calculated by setting w= wR in

The above discussion of resonant frequency was applicable to absolute
transmissibility TA (i.e., the excitation is the motion of the foundation and the
response is the motion of the mass). However, other resonant responses can be
defined. Some of these are: 1) relative transmissibility TR (i.e., the excita-
tion is the motion of the foundation and the response is the relative motion
between the mass and the foundation); 2) acceleration amplification factor Ha
(i.e., the excitation is a force on the mass and the response is the acceleration
of the mass); 3) driving point mobility M (i.e., the excitation is a force on the
mass and the response is the velocity of the mass). Another frequency of
interest is the damped free vibration natural frequency Wy Of all the above
resonant or natural frequencies, only the ones for relative transmissibility and

acceleration amplification factor are the same.

Another approximate resonant or natural frequency can be defined as the
square root of the ratio of the modulus of the complex stiffness K* to the mass m,

as follows

2 _ Re(k*)/ 1+¢€°
m

Wpr (55)

All of the above defined resonant frequencies, as well as the damped

natural frequency and the two approximate frequencies, are shown graphically in
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Figure 8 as a resonant or natural frequency ratio %o_ versus the fraction of
critical damping { for a value of N =3, The frequency ratio —%’- is the

ratio of the resonant or damped natural frequency to the undampec? natural fre-
guency s . The resonant frequencies for absolute transmissibility and driving
point mobility and the damped natural frequency are fairly close. For these
frequencies, the approximation using Re(K*) is better for low values of ¢,
whereas the approximation using the modulus of K*(i.e., Re(K*).«/i +€%), is
better for high values of ¢ . The approximation using the modulus of K* is
better at all values of ¢ for the resonant frequencies of relative transmissibility
and acceleration amplification factor. A case could be made for using the
modulus approximation. However, these results represent rather large values
of €, which is comparable to the loss factor of damped beams, For low values
of €, there is very little difference between the modulus approximation and the
Re(K*) approximation. Another consideration is that the Re(K*) approximation

is much easier to calculate.

The conclusions that are drawn from the lumped parameter model studies
are: 1) using the Re(K*) in the undamped natural frequency equation did not
give the exact answer for any of the resonant frequencies or for the damped
natural frequency; 2) the frequency calculated by using the Re(K*) will give a
fairly good approximation to the resonant frequencies and the damped natural
frequency, especially when the damping is small; 3) the various resonant fre-
quencies and the damped natural frequency are in general not the same and
determination of the exact frequencies requires a separate analysis for each of

these frequencies.

Summary of the Resonant Frequency Analyses

The relation for calculating resonant frequencies of viscoelastic shear-
damped structural composites, as given by Equation (32), was derived based
on the assumption that there is an effective flexural rigidity of these structural
composites equal to the real part of the complex flexural rigidity. As was the
case when considering structural loss factors, this assumption is again
supported by the theoretical work of DiTaranto [Ref. 5], and also by the
theoretical results of Snowdon [Ref. 6]. Lumped parameter model studies
have also indicated that there is some justification for this postulate and
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subsequent experimental results have shown good agreement with theoretical

results based on this postulate (see Section 5).
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SECTION 4: DESIGN PROCEDURES

This section of the report presents design procedures and design graphs
pertaining to the structure loss factors and resonant frequencies of the four
types of structural composites illustrated in Figure 3. In all of these illustra-
tions, the elastic and viscoelastic elements are shown as laminates; however,
this restriction is applicable only to the N identical-elastic-laminate struc-

ture shown in Figure 3(d).

Six cross-sections of two-elastic-element structures are shown in
Figure 4. The angle design shown in Figure 4(f) can be considered as a two-
elastic-element structure since the two plates will act as one element [Ref. 1],
Typical cross-sections of symmetrical three-elastic-element structural com-
posite designs are shown in Figures 5 and 6. In some cases, there are actually
more than three elastic elements employed in the design; however, because of
the physical orientation and identical flexural bending properties of the identical
elastic elements located on either side of the central elastic element, the struc-
tural composites may be considered to be in the symmetrical three-elastic—
element design category. Figure 7 shows six representative cross-sections of

the unsymmetrical three-elastic-element type of structure.

Numerical iterative design procedures are presented below for obtaining
the structure loss factor 1 for a given resonant frequency f, and for obtaining
the structure resonant frequency fr for a given reference frequency fo . These
procedures may be employed (either manually or with digital computer facilities)

to achieve virtually any desired degree of accuracy.

A graphical design procedure (requiring no iteration process) is then
presented for obtaining structure loss factor as a function of frequency and the
structure resonant frequencies. This procedure involves the use of a set of
design graphs that provide the structure loss factor 7 and the resonant fre-
quency ratio £ /fy as a function of the uncoupled shear parameter X,. Since
this design procedure is relatively simple to use, it provides a rapid means of
assessing the suitability of a proposed composite structural design with regard
to the structure loss factor. The accuracy of this procedure, however, is

limited to that associated with reading the design graphs.
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Definition of Design Parameters

Use of Equation (15) for structure loss factor m and Equation (32) for
resonant frequency ratio fr/ fy require the determination of the geometrical
parameter Y and the complex coupling parameter Z*. The geometrical
parameters for a wide variety of cross-sections of the four types of structural
composites considered are given in Reference 1. The real and imaginary parts
of the complex coupling parameter Re(Z*) and Im(Z*), respectively, are
defined below for each of the four types of structures, as a function of the
parameter X, the viscoelastic material loss factor B and other parameters
when necessary. The shear parameter for all of these structures is given by
Equation (31). The extensional stiffness K in Equation (31c) is the only
quantity whose definition will be different for the four types of structures and

is given below, along with Re(Z*) and Im(Z%*).

Two-Elastic-Element Structures

K
K = K]_ 2

- K1+K2 (56)

X(1 +X) +X?p?
Re(Z*) = . (57)
(1+X)° +x°8°

XB
Im(Z*) = 1 +X)2 +X232 (58)

Symmetrical Three-Elastic-Element Structures

K=K, (59)

X(L+X) +X°8°
(1 +X)% +x°B8°

Re(z*) = (60)
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%) — XB
Im(Z*) = 053%° 138 F° (61)

Unsymmetrical Three-Elastic Element Structures

K=K, (62)

(Co/CL) { G + Cp Ca (1487) +Cy (1-8°) IXH(C1 Ca +C2 C) (148°)X° +C1 G, (14877 X° X

Re(Z*) = [ 14GCs X4C, (L-B 2T+ Cs +2C,. X 12 B2 X (63)

_ (C/CL){ G +2C1 XH(Cy Cs -G Cy ) (1487)X° 1 BX

Im(z%) [ 14Ca X+C, (1-B2)X® 12 +[Ca +2C, X B°X°

(64)

where G 1+(cdy /e )? +(dy /de ~1)° Ky /Ke

Ce = 14(dy /ds -1)?

Cs = 34K /Ka

C, = 142K /Ko

N Identical-Elastic-Laminate Structures

K = ERH (65)

For N odd, define n = (N-1)/2

Re(74) = prtXors [n-Re(Q,) +1m(Q,) ] (66a)
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Im(2¥) =rre ey LAR ~ BRe(Q)-Im(Q,)] (672)

where Re(Qn) and Im(Qn) are obtained by solving the 2n simultaneous

equations with i=1, 2, ..., n.

5 iRe(Q) +10Re(Q) # 35 Re(Q)-XBIm(Q) = iX

j=id

(683a)
g,jlm(QjH(HX)Im(Qi) +i§l1m(Qj)+XB Re(Q,) = iXB
For N even, define n=N/2
12X
Re(Z*) = n@nt 1) [n-1/2-Re(Q )+B Im(Q )] (66b)
12X ,
Im(z*) = oy B-1/2)-BRe(Q)-Im(Q,) ] (67D)

where Re(Qn) and Im(Qn) are obtained by solving the 2n simultaneous

equations withi=1, 2, ..., n.

351/ 2IRe(QHi-1/2+01Re(Q) +(1-1/2)3"  Re(Q)-X BIm(Q=(i-1/2X
(68b)
:Z::(J'-l/Z)Im(Qj) +i~1/2+X)1Im(Q,) +(i-1/z)§l Im(QJ_) +X B Re(Q,)=(i-1/2)X B
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Resonant Frequencies and Loss Factors for a Given
Beam and Viscoelastic Material

The following iterative design procedure can be employed to calculate
the structural resonances and the structure loss factor at these resonances for
a given beam configuration. For the particular beam cross-section, calculate
the geometrical parameter Y and, using Equation (31c) with the proper
definition of extensional stiffness K for the four types of structures, calculate
the shear parameter coefficient C. For a given length of beam and end
conditions, calculate the various modes of interest of the reference frequency o
using (EI)o as the flexural rigidity in the undamped natural frequency equation,
For each reference frequency f,, the following iteration procedure is required
to calculate the corresponding structure resonant frequency f,. Initially set
Z =0 and hence fr = fo . With this value of fr, obtain G’ and B for the
viscoelastic material used. With these values of Z, f, and G’, calculate X
from Equation (31). With these values of B and X calculate Z from the
appropriate equation for the type of structure being considered. Substitute this
value of Z into Equation (32) to obtain an improved value of fr‘ This procedure
is then repeated using the improved value of fr so obtained. Four or five
iterations are required using the criteria that the last two values of f, calcu-
lated differ by less than 1/10 of one percent. To obtain the loss factor at this
frequency, use the last values calculated for B and X and calculate Im(Z¥)
from the appropriate equation for the type of structure being considered. Using
this value of Im(Z*) and using the last value of Z calculated above for
Re(Z*), calculate the structure loss factor M from Equation (15). For digital
computer computations, the values of G’ and B as a function of frequency

have to be entered into the computer in either tabular or equation form.

Development of Design Graphs

For the four types of structural composites considered, relationships
have been found expressing the coupling parameter Z = RE(Z*) as a function
of the shear parameter X = Re(X*), as given by Equations (57), (60), (63), and
(66). These relationships, which will always contain the parameter B and may
contain other parameters depending on the particular type of structural composite,
can be expressed in general as
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Z = Z(X) (69)

An iteration procedure is now used to determine Z and X. First,
assume some value of X,. To begin this iteration let X = X, - Insert this
value of X into the particular form of Equation (69) that is applicable for the
type of structure being considered and obtain a value of Z. This value of Z
is used with Equation (31a) to obtain an improved value of X. Repeat the
procedure to any desired degree of accuracy. In this iteration process, it is
not necessary to give particular values to G’ , £; or any of the values used to
calculate C in Equation (31lc). It is necessary only to give values to X,, Y,
B, and any other parameters necessary in the particular form of Equation (69)
being used,

The imaginary part of the complex coupling parameter Im(Z*) is a
function of the same parameters as is Z so that, after 2 and X are deter-
mined, Im(Z*) can be calculated. With the real and imaginary parts of Z*
and a value of the geometrical parameter Y, the structure loss factor 7 is
calculated by using Equation (15) and the frequency ratio fo/fr is calculated
using Equation (32). The above calculations are repeated for other values of
X, and design graphs can be constructed providing 7 and fo/fr as a function
of X (defined by Equation (31b) for a particular type of structure) and given
values of B, Y, and any other parameters necessary in the particular form of
Equation (69).

For some particular cases, B and Y are the only parameters necessary.
In these cases a series of graphs can be drawn, each with a different value
of Y. On each of these graphs there can be a series of curves, each with a
different value of B. Alternatively the graphs can be drawn, each with a
different value of B, having a series of curves, each with a different value
of Y. Such a group of design graphs represents a complete graphical descrip-
tion of the structural loss factor and resonant frequency ratio for the particular
type of structural composite considered, For the particular type of structural
composite that the design graphs apply to, the parameters C and Y are
calculated and, for a particular frequency of interest, B and G’ are obtained

from data for the particular viscoelastic shear-damping material being used.
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In the definition for C given by Equation (31c), K is the only
quantity whose basic definition will be different for different types of struc-
tural composites. The definition of K for the four tylpes of structures are
given by Equations (56), (59), (62), and (65).

Two-Elastic-Element and Symmetrical Three~Elastic-Element Structures.

For two-elastic~element and symmetrical three-elastic element structures,
the only parameters required to prepare the design graphs of and fo/fr
versus X, are the geometrical parameter Y and loss factor B. A set of
design graphs developed for these two types of structural composites are
presented in Figures 9 through 19, where B varies on eath graph for a given
value of Y. For the design graphs presented in Figures 20 through 37, Y
varies on each graph for a given value of B. The values of 1 plotted were
generally between 0.01 and 1.0. Values of N below 0.0l would indicate
a poor structural composite design since this is comparable to a resonance
amplification factor of 100. Values of 7m above 1.0 represent poor designs
from the static stiffness and weight points of view [Ref. 1],

All of the m versus X0 curves.have a slope (on log paper) of +1 for
low values of Xo and -1 for high values of Xo . The sharpness of the peaks
increases and the value of X at the peaks decreases as B and/or Y
increases. It is interesting to note that for high values of X (low values of
frequency), the B = 1 curve in Figures 9 through 19 and the Y = 2 curve in
Figures 20 through 37 represent the maximum obtainable structure loss factors.
These general characteristics are illustrated in Figure 38. Referring to
Figures 9 through 19, for a given value of X, and Y, there is a finite value
of B between 1 and = that will give the maximum value of the structure loss
factor m. Referring to Figures 20 through 37, for a given value of X, and B,
there is a finite value of Y between 2 and « that will give the maximum
value of the structure loss factor 1. The physical significance of an optimum
value of Y is somewhat nebulous since the same physical properties of the
structure's cross-section are used in calculating both Y and the shear
parameter coefficient C, to which X, is proportional. The physical
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significance of an optimum value of B is that, as the viscoelastic material
becomes more viscous (higher value of B), the elastic elements become more
coupled together and, therefore, there is less shearing action. Since the
structure loss factor depends on the viscosity of the viscoelastic material
and the amount of shearing, it seems reasonablé that there would be some
value of B that would give the optimum combination of viscosity and the

amount of shearing.

The frequency ratio f,/f, approaches a value of unity as the uncoupled
shear parameter X, approaches zero; furthermore, fo/.fr approaches a value
of l/m as X, approaches infinity. This dependence can be seen from
Equation (32) and the fact that, as X, approaches zero’, the coupling param-
eter Z approaches zero, and as X0 approaches infinity Z approaches unity.
The relationship between the uncoupled shear parameter X, and the shear
parameter X can be seen by considering Equations (31a) and (32), so that

Xs /X is equal to the frequency ratio f/f.

In Figures 9 through 37, for any curve (i.e., for any given values of
B and Y), there is one peak value of structure loss factor. This is defined
as the maximum structure loss factor 7My3x and is presented graphically as a
function of the geometrical parameter Y for various values of the viscoelastic
material loss factor B in Figure 39 [Ref. 1]. Also, the value of the uncoupled
shear parameter X, at which 7 = Max which is defined as the optimum
uncoupled shear parameter (Xo)op: is presented graphically as a function of

the geometrical parameter Y for various values of B in Figure 40.

Approximation for Unsymmetrical Three-Elastic-Element Structures. -

Using the appropriate definitions for the geometrical parameter Y and the
uncoupled shear parameter X,, the loss factor design curves presented in
Figures 9 through 37 apply for the two-elastic-element and the symmetrical
three-elastic-element type structures. They can also be used as an approxi-
mation for the unsymmetrical three-elastic-element type structural composite
by using the method developed in Appendix D. This method indicates that the
Xo scale should be multiplied by some number depending on the parameters
di1 /da and Ki/Kz = Ei1 A1 /Ez Az (see Figure 3c for the definitions of di,

dz, E1, Ez, A1 and Az). However, it is probably easier to determine a
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corrective multiplier for X,, rather than actually changing the XO scale. The
corrective multiplier is just the reciprocal of the scale multiplier. The
corrective multiplier has been plotted versus the parameter Ki/Ka for various
values of di/ds in Figure 41. Loss factors and resonant frequencies for the
unsymmetrical three-elastic-element structural composite can be obtained by
multiplying X, by the value obtained from Figure 41 before entering the curves
presented in Figures 9 through 37.

Shear Parameter Coefficient for Two- and Three-Elastic-Laminate Plates.-

The design graphs of structure loss factor  versus the uncoupled shear
parameter X, presented in Figures 9 through 37 can be used to predict the
variation of structure loss factor with frequency. For any given frequency f,
the uncoupled shear parameter can be calculated by using Equations (31b) and
(31c). To facilitate this calculation, the shear parameter coefficient C times
the thickness of the viscoelastic layer(s) H, has been calculated and plotted
for some common cross-sections. The cross~sections are of two-elastic-
element and three-elastic element composite structural plates comprised of
various combinations of fibre-glass, magnesium, aluminum, titanium and
steel sheets. The properties of these five materials used in the calculations
are listed in the table below. Graphs of the quantity CHV versus the thick-

ness ratio Hi1 /Hz [see Figures 4(a), 5(a), and 7(a)] are presented in Figures

MATERIAL ELASTIC MODULUS (psi) DENSITY (1b/in®)
FIBRE-GLASS 2.5x 10° 0.064
MAGNESIUM 6.5x 10° 0.064
ALUMINUM 10 x 10° 0.098
TITANIUM 14.8 x 10° 0.175
STEEL 28 x 10° 0.29
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42 and 43. Figure 42 is for two-elastic-element composite structural plates,
and Figure 43 is for three-elastic-element composite structural plates (either
symmetrical or unsymmetrical). For these particular structural composites,

the graphs of CHV versus Hi/Hz can be used as a design guide for determin-
ing the value of the thickness of the viscoelastic layer Hv and the thickness
ratio Hi/Hz.

Comparison of the Symmetrical and Unsymmetrical Three-Elastic-

Element Structures. - From the analysis in Appendix C, it is seen that chang-

ing a three-elastic-element structure from a symmetrical arrangement to an
unsymmetrical arrangement essentially shifts the 1 versus X, curve to the
right for most practical structures. Since X, 1is proportional to Gl/f, which
decreases with increasing frequency for most viscoelastic materials {Ref. 2,

p. 73], a plot of N versus frequency will be shifted to the left (see Figure 44).
Neglecting the effects of the geometrical parameter, the unsymmeitrical arrange-
ment will have higher loss factors in the low frequency region which is usually

the more important since the frequency where 7 =755 1is usually quite high.

For the special case where the elastic elements are structural sheets
and Ei1/Ez > 1, the geometrical parameter for the unsymmetrical arrangement
is greater than or equal to the geometrical parameter for the symmetrical arrange-
ment [Ref. 1, p. 85]. Therefore, for this case the unsymmetrical arrangement
is better for the low frequency range. This comparison is based on the two
structures having the same weight, static stiffness and shear parameter
coefficient C since the only difference assumed was in changing the arrange-

ment of the elements.

For the most common case of structural composites composed of a
lamination of structural sheets, a comparison of the symmetrical and unsym-
metrical three-elastic-element type structures has been made. This is shown
graphically in Figures 45 and 46. It is assumed that the thickness of the
viscoelastic layers Hv is small compared to Hi 4+ Hz so that its value is
taken as zero in the calculation of the distance d for the symmetrical case,
and of the distances di and dz for the unsymmetrical case. The only other

parameters necessary for these calculations are the ratios Hi/Hz and Ei1/Ez.
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N Identical-Elastic-Laminates. - For the case of N identical elastic

laminates, the analytical solution is considerably more complicated than for
the two and three-elastic element cases. As was shown in Appendix A, the
solution for a general N elastic element structure requires the solution of

N - 1 complex simultaneous equations or 2(N-1) real simultaneous equations.
The reason for this is that there is one complex equation for each viscoelastic
layer. TFor N identical elastic laminates the solution is somewhat simplified.
There are two reasons for this: (1) Since all the elements are identical, the
extensional stiffness terms Ki can be taken outside of the summations,
thereby simplifying the equations; and (2) due to symmetry, the number of
complex equations reduces to (N-1)/2 when the composite neutral axis passes
through an elastic element (i.e., N is odd) or N/2 when the composite neutral
axis passes through a viscoelastic element (i.e., N is even). The equations
to be solved are Equations (68a) when N is odd and Equations (68b) when N
is even. The only parameters necessary to solve these equations are XO , Y,
B, and N.

The geometrical parameter Y = (N®-1)(1 +2v)? , where V = HV/ZH, HV
is the thickness of the viscoelastic damping layers, and H is the thickness of
the elastic laminates. Therefore, for given values of N, V, and B, a design
graph of the structure loss factor 71 versus the uncoupled shear parameter X,
can be obtained. This was accomplished for the five values of N equal to
2, 3,4, 6, and 8. For each value of N, four values of the viscoelastic layer
thickness parameter V were selected equal to 0, 0.05, 0.1, and 0.15, and
values of the viscoelastic material loss factor B ranging between 0.05 and

5 were selected. The results are displayed graphically in Figures 47 to 56.

The shape of these curves is quite similar to those for the two- and
three-elastic-element structures. Here again, for high values of X, (low values
of frequency), the B =1 curve represents the highest obtainable structure loss
factors. Of course, for N =2 and N = 3, these results are just special cases

of the two- and three-elastic-element structures, respectively.

For thHe purpose of illustrating the effect of increasing the number of
laminates, the maximum structure loss factor Mpax and the optimum uncoupled
shear parameter (X;)op have been plotted versus the viscoelastic material
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loss factor B for values of N equal to 2, 3, 4, 5, 6 and 8 in Figures 57
and 58. For these curves, it was assumed that HV << H, sothat V=0,

At first there is a large increase in M5, as N is increased, but the rate of
increase in n'max decreases for further increase in N. This is necessarily so

since, as N approaches infinity, 7 approaches 8.

max
Due to the fact that all elastic elements are assumed to be identical
structural sheets, the uncoupled shear parameter X, for this case takes a

particularly simple form. From Equation (31c)

0.903
H JEr (70)

v

C =

where HV is the thickness of the viscoelastic damping layer (in), E is the
modulus of elasticity (Ibs/in’) and ¥ is the weight density (I1bs/in®) of the

elastic elements. From Equation (31b)

- 220 (%) o

where G’ is the real part of the complex shear modulus (lbs/in°) of the
viscoelastic material, and f is the resonant frequency (Hz).

Design Example

As an example of the use of the design graphs for predicting resonant
frequencies and associated loss factors, one of the beams from the experimen-
tal tests (see Figure 67) was chosen, This is a two-elastic element beam
comprised of aluminum plates. The pertinent cross-section dimensions of the
beams are: thickness of the top aluminum laminate Hi = 0.0309 inches;
thickness of the bottom aluminum laminate Hz = 0.0899 inches; and thickness
of the viscoelastic layer HV = 0,0048 inches. The viscoelastic material is 3M

No. 466 adhesive transfer tape.

The thickness ratio Hi /Hz = 0.344 so that, using Figure 2.11(B) of
NASA CR-742 [Ref. 1], the uncorrected geometrical parameter Y0 is 1.33.
The viscoelastic thickness parameter V = HV/(Hl + Hz) = 0.0397 so that,
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using the graph on page 15 of NASA CR-742, the geometrical parameter ratio is
1.165 and, therefore, the geometrical parameter Y = 1.55. To calculate the
shear parameter coefficient C, use of Figure 42 with H, /Hz = 0.344 gives
CH, =3.1x 10"% and, therefore, C = 0.646. Using Figure 63, values of the
uncoupled shear parameter X, = C(G'/f) were obtained Jfor frequencies in the
range of 10 to 1000 Hz and an assumed temperature of 75 F. With these values
and using Figure 14, values of the structure loss factor m and the frequency
ratio f,/f, are obtained. (The value of 1.55 for the geometrical parameter is
considered close enough to 1.5 so that interpolation between graphs with
different values of Y was not necessary). For every frequency f = f;, the
frequency ratio fo/fr is multiplied by f. to obtain f, . These results are
tabulated below, from which the graphs of f. versus fo and 7n versus f;

shown in Figure 59 were obtained.

/ '
i ¢ %=9%) 8 0 &/ &
10 4.65 3.00 1.40 0.055 (.648 6.48
15 3.90 2.52 1.40 0.065 0.652 9.78
20 3.40 2.20 1.40 0.074  0.655 13.1
30 2.80 1.81 1.40 0.088 (.658 19.7
40 2.45 1.58 1.41 0.10 0.664 26.6
50 2.23 1.44 1.41 .11 0.67 33.5
70 1.90 1.23 1.41  0.125 0.675 47.2

100 1.62 1.05 1.42 0.135 0.683 68.3
150 1.33 . 0.859 1.42 0.16 0.692 104
200 1.17 0.756 1.42 0.17 0.70 140
300 0.97 0.627 1.43 .19 0.715 215
400 0.85 0.549 1.43 0.205 0.73 292
500 0.77 0.497 1.43 .21 0.74 370
700 0.66 0.426 1.43 0.225 0.763 534

1000 0.56 0.362 1.43 0,235 0.78 780
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Up to this point, the length, width, or end conditions of the beam have
not influenced the design process. For the particular beam under consideration,
the length 14 = 36 inches and the width b = 3 inches. The beam was used as
a free-free beam in the experimental test. In this test the resonant fre-
quencies and the corresponding loss factors were measured for seven modes.

To determine these quantities from Figure 59, it is first necessary to calculate
the reference frequency fo for these seven modes of this free-free beam. The

equation for reference frequency is

f ==%§? ;;3 i&}LL (72)

where @, 1is a number associated with mode m. The table below gives -

for the first ten modes of a free-free beam.

m 1 2 3 4 5 6 7 8 9 10

o« 22.2 61,6 121 200 299 417 555 713 891 1088
The weight per unit length for this beam was measured and is w = 0.0355
pounds per inch. The uncoupled flexural rigidity was calculated to be
(EI)g = 1895 lb-in®. The reference frequencies fo for the first ten modes were
calculated from the above equation and with these values, the corresponding
resonant frequencies f; and structure loss factor 1 were obtained from

Figure 59. The results are tabulated below.

Mode fo £ _n
1 12.4 19 0.073
2 34.3 51 0.11
3 67.5 100 0.14
4 111 160 0.163
5 167 235 0.18
6 232 320 0.195
7 - 309 420 0.207
8 397 530 0.217
9 497 660 0.225

10 607 785 0.23
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The values of f, and 7m from this table are plotted in Figure 60. Also
on this graph are the values of f. and 7m obtained experimentally. It can be
seen that modes five, seven, and either nine or ten in the experimental data
are missing. This is due to the particular location of the point of excitation
for this experiment.
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SECTION 5: EXPERIMENTAL VERIFICATION OF THE THEORETICAL CALCULATIONS

This section of the report presents a comparison of the theoretical
predictions and experimental measurements of the structure loss factor and

resonant frequencies of two-elastic-element, symmetrical three-elastic-
element, unsymmetrical three-elastic~element and N identical-elastic-

laminate viscoelastic shear-damped structural composite beams. Cross-
sections of the experimental structural specimens, which included laminated
beams comprised of solid sheets, solid and honeycomb sheets, solid sheet
with channel section, and various bars and tubes, are presented in Figures 61
and 62. Aluminum and fibre-glass structural materials were employed, and

the viscoelastic damping material was 3M No. 466 adhesive transfer tape. The
dynamic elastic properties of the damping material are presented in Figure 63.

The experiments were performed at temperatures ranging between 70° and 80° F.

Measurement of Structure Loss Factor

The decay rate method was selected to measure the loss factor of the
viscoelastic shear~-damped beam specimens since the measurements can be

made with considerable speed and the method is generally accepted by

researchers in the field of structural damping [Ref. 9-10! ]. Repeated measure
ments of vibration decay can be made on a structural member under the same
conditions in rapid sequence thereby providing an accurate measurement of

damping through averaging of data. If the rate of decay is measured in terms

of the reverberation time Tgq. the structure loss factor 1 is given by

2.2 2.27,
(73)

’r’ = =
£ Teo  Teo

where Tgq is the time required for the amplitude of free vibration to be
attenuated by 60 db (corresponding to a factor of 1000), £, is the resonant
frequency of the decaying vibration for the particular mode of vibration being
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evaluated, and T, = 1/ fy is the period of the vibration at each particular

resonance.

The experimental system for measuring the loss factor of the visco-
elastic shear-damped beam specimens is shown in Figure 64;the instrumentation
for the experimental system is identified in the chart presented below.

INSTRUMENTATION FOR MEASUREMENT OF STRUCTURE LOSS FACTOR
Instrumentation Manufacturer Model Number
Electrodynamic Exciter AR-10 Driver
{Magnetic Housing and || Acoustic Research, Inc. Coil and Magnet
Driver Coil) Assembly
Accelerometer B&K 4336
Acriglui)fcilzrf‘ollower Columbia Research Lab. 6003
High-Pass Filter Krohn-Hite 330-M
Decay Rate Meter Spencer-Kennedy Lab. 507
Power Amplifier Dynaco Mark III
Oscilloscope Tektronix 564/2867/3A3
Harmonic Oscillator JL Exact Electronics 502

The structural specimen is supported vertically by a string suspension. A
small driver coil is cemented to the specimen in a manner which will add a
minimum amount of stiffness or weight and allow centering of the driver coil
within the magnetic housing of the electrodynamic exciter, which provides a
linear magnetic field for the drivei coil. The electrodynamic exciter, which
is driven by the harmonic oscillator through a power amplifier, is capable of
delivering 25 watts of power to a beam specimen for an extended period of

time at a maximum linear peak-to-peak displacement of one-half inch.

The response of the beam specimen is detected by the accelerometer
which is mounted near the end of the beam with a counter weight of equal
magnitude (2 grams) mounted on the opposite end of the beam for purpose of balance.

The high-pass filter is used to reject all frequencies less than the particular
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resonant frequency at which the loss factor is being measured. The decay
rate meter provides electronic switching between two alternating functions:
(1) processing the signal from the high-pass filter through a logarithmic
amplifier, and (2) generating a calibrated logarithmic decay signal. The
oscilloscope provides alternate displays of the logarithmic decay signal
representing the beam vibration and the calibrated logarithmic decay signal.

The experimental procedure for the measurement of the structure loss
factor is as follows. The structural specimen is excited by harmonic vibra-

tion at each of its resonant frequencies so as to attain a steady-state

vibration condition. The cutoff frequency of the high-pass filter is set
approximately at the resonant frequency. As part of the electronic switching
function performed by the decay rate meter, the excitation vibration is abruptly
removed from the structure and the ensuing vibration decay is sensed by the
accelerometer. The accelerometer signal is processed through the cathode
follower amplifier, high-pass filter and decay rate meter. The decay rate
meter processes the signal through a logarithmic amplifier and generates a
separate calibrated logarithmic decay signal. The structure vibration decay
signal and the calibrated decay signal are alternately displayed on the
oscilloscope on a repetitive basis thereby allowing adjustment of the calibrated
decay signal to match the vibration decay signal. When the calibrated decay
signal is adjusted to match the structure vibration decay signal, the value of
the reverberation time Tgqg is read from the decay rate meter and the structure

loss factor is calculated from Equation (73).

Loss factor measurements are made at the various resonances of the
structure and, therefore, data is obtained at discrete frequencies. However,
a curve may be passed through the discrete loss factor data points to generate
a description of loss factor as a continuous function of frequency. The
connotation is that if the structure were to resonate at an intermediate
frequency, the continuous curve of loss factor versus frequency indicates

the loss factor which exists for that particular mode of vibration.

The filter in the experimental system places a limitation on the
maximum value of structure loss factor which can be measured accurately.

Because of its "ringing" characteristic, the filter itself exhibits a decay
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rate characteristic and, hence, the experimental system may be employed
only to measure vibration decay rates which are less than that of the filter.
The active high-pass filter was selected because of its high rejection

rate (24 db/octave) below the cutoff frequency and its favorable ringing
characteristic. Based on the fact that the effective loss factor of the

filter was generally greater than 0.5 over the frequency range of interest

(10 Hz to 1000 Hz), data can be obtained for structure loss factor measure-
ments as high as 0.5. Actually, even if the range of loss factor measurement’
was not limited by the filter ringing characteristic, there would be another
limitation imposed by the physical difficulty encountered in interpreting the
decay of a signal having a few cycles of oscillation, which would be the
case for values of loss factor greater than 0.5 (see Figure 65). It is concluded
that the experimental system is capable of measuring maximum values of

structure loss factor equal to 0.5.

Another limitation on the measurement of structure loss factor is due
to the limitation of the reverberation time Tgy of the decay rate meter. This

limitation is

0.01 = Tgg= 10 (74)
so that, from Equation (73)
0.22 o . < 220 75
2 n i (75)

This limitation as well as 1S 0.5 are depicted graphically in Figure 66.
If a theoretically calculated value of the loss factor fell within the shaded
area, then the corresponding experimentally determined value was rejected

from the statistical analysis of the experimental data.

Measurement of Resonant Frequency

The resonant frequencies are found by slowly varying the frequency of
the harmonic oscillator until the output from the accelerometer goes through
a peak value. Since the sharpness of the peak depends upon the positioning

43



of the accelerometer and the driver coil, the mode of vibration, and the loss
factor, some modes were easier to determine than others and some modes did
not show up at all. In general, the higher modes were more difficult to
determine and are also very closely spaced when plotted on log paper. For
this reason any mode greater than the fifth was rejected from the statistical

analysis of resonant frequency.

Presentation of Experimental Data

The experimentally determined values of structure loss factors and
resonant frequencies for 44 different beam specimens are plotted in Figures
67 through 110. Also the theoretical structure loss factor curve has been drawn
on these graphs. The relevant modulus and dimension data are presented with
each graph as well as the value of the geometrical parameter Y and the shear
parameter coefficient C. There are 16 two-elastic-element beams shown in
Figures 67 through 82. The effect of varying the thickness of the viscoelastic
layer H,, is illustrated in Figures 71, 72 and 73 where H,, is 0. 0045 inches,
0.0146 inches, and 0. 025 inches, respectively, and all other dimensions are
the same for the three beams. There are 21 symmetrical three-elastic-element
beams shown in Figures 83 through 103 and 4 unsymmetrical three-elastic
element beams shown in Figures 104 through 107. Only three N identical-
elastic laminate beams are included and those are shown in Figures 108 through
110. The value of N for these beams is 2, 3, and 4 respectively. Four other
N identical-elastic-laminate beams having N = 5, 6, 7 and 8 were tested
but the loss factors for these beams were greater than 0.5 and therefore, could
not be measured accurately based on the aforementioned limitations on loss

factor measurements.

Sources of Errors.- The discrepancies between the experimental and

theoretical data indicated in Figures 67 through 110 indicate the degree of
accuracy that can be expected when predicting structure loss factors. While
there can be many sources of errors, it is felt that the most significant are the
following: (1) the loss factor B and the storage modulus G’ of the
viscoelastic damping material are not easily determined and vary considerably

with the frequency of vibration and temperature; (2) the thickness of the
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viscoelastic layer(s) H, is difficult to measure and in many cases causes an
error in the structure loss factor proportional to the error in measuring Hy, ;

(3) the viscoelastic material may not have perfect contact at the interfaces
with the elastic elements and/or may have entrapped air bubbles. Of course,
the experimentally measured values can also be in error and this will add to

the discrepancies between theory and experiment.

Statistical Analysis of Experimental Data

The experimentally determined values of structure loss factor Mg and
resonant frequency (fr)e are plotted versus their theoretically predicted values
yn and (fx)t ,respectively,in Figures 111and 112. The data point symbols used in
these figures are identified in the chart below.

SYMBOLS USED IN FIGURES 111l and 112

-

TYPE OF STRUCTURAL COMPOSITE SYMBOL

Two-elastic-element *
Symmetrical three-elastic-element b
Unsymmetrical three-elastic-element o

N identical-elastic~laminate x

A linear regression of In ne on In 'nt , representing a least squares
fit for ne on log paper, was obtained for 226 data points for which the

equation is

Inn = 0.017575 + 1.00126 1n n, (76)
or

n, =1.0177 nt1‘00126 (77)

This result indicates excellent agreement between experiment and theory;
however, the correlation coefficient squared (a measure of the goodness of

fit) is 0..92,which is only fairly good.
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Also, a linear regression of In (fr)e on ln (fr)t’ representing a least
squares fit for (fr)e on log paper, was obtained for 164 data points for which

the equation is

In (fr)e = 0.1769 +0.962 1In (fr)t (78)

or

(f)_ = 1.19 (f!_)to'96z (79)

This result indicates fair agreement between experiment and theory; however,

the correlation coefficient squared is 0.997, which is excellent.

Statistical analyses were made of the 226 values of ln ne—ln 'nt, which
is the same as In (ne/nt), and of the 164 values of ln(fr)e— ln(fr)t’ which is the
same as ln[(fr)e/(fr)t] . The calculated means were 0.0148 and 0.00735,
respectively. Since the logarithm of the geometric mean is the arithmetic
mean of the logarithms of the values being analyzed, the geometric mean of
ne/‘nt is 1.015 and the geometric mean of (fr)e/(fr)t is 0.993. These values
for the geometric means show excellent agreement between experiment and

theory.
The standardized probability densities of In (T]e/nt) and of

In [(fr)e/(fr)t] are shown compared to the standardized normal distribution in
Figures 113and 114, respectively. It was expected that these distributions would
be approximately normal since it seems that the errors are caused by many
factors, none of which represents a predominant influence [Ref. 1and 1] The
hypothesis that In (ne/nt) is norma;lly distributed is well justified (in comparing
this distribution with the normal, X with six degrees of freedom = 5.44). The
hypothesis that In [(fr)e/(fr)t] is normally distributed is not so well justified
(in comparing this distribution with the normal, )(2 with six degrees of freedom
=13,6). However, the following discussion will assume that both ln(ne/nt)

and ln[((fr)e/(fr)tj are normally distributed with @ zero mean value.

The standard deviation of 1n (‘ne/nt) is 0.253 so that it can be expected
that 68 percent of the values of 176/7)t will be between 0.78 and 1.29 and
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95 percent will be between 0.6 and 1.66. The standard deviation of

In [(fr)e/(fr)t] is 0.0846 so that it can be expected that 68 percent of the values
of (fr) e/(fr)t will be between(0,92 and 1.09 and 95 percent will be between
0.844 and 1.18, Alternatively,it could be stated that the percent errors of Mg
with respect to N, corresponding to plus and minus one standard deviation of
ln('ne/'r)t) are + 29 and -22, and that the percent errors of (fr)e with respect

to (fr)t corresponding to plus and minus one standard deviation of
In [(fr)e/(fr)t] are +9 and -8.

Based on the results of the statistical analyses of the experimental
data compared to the theoretical predictions, it is concluded that the
theory and design procedures for calculating the loss factor and resonant
frequencies of two-elastic-element, symmetrical three-elastic-element,
unsymmetrical three-elastic-element, and N identical-elastic-laminate
viscoelastic shear-damped structural composites is satisfactory within

accepted engineering accuracy.

Transmissibility of Viscoelastic Shear-Damped Beams

Transmissibility tests were run on two of the beams that were used in
the loss factor and resonant frequency analysis (see Figures 67 and 85 for the
cross section dimensions of these beams). The experimental setup was as
illustrated in Figure 115. The original beam was clamped at its center, making
two equal cantilever beams. This was done to avoid applying unbalanced
moments to the shaker armature. In both cases the beam length 4 was 17.5
inches. The input vibration was measured at the clamp and the output was
measured at the end of the beam using a small (2-gram weight) accelerometer.
The transmissibility is defined as the ratio of the amplitude of the output to
the amplitude of the input.

The theoretical transmissibility for a damped beam is obtained by using
the transmissibility expression for an undamped beam, replacing the flexural
rigidity by the complex flexural rigidity, and taking the square root of the sum
of the squares of the real and imaginary parts, The expression for the
undamped transmissibility is given as [Ref. 7]
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hBL + L. _m.(ZWf)a
TC.9) = SoonpL cocsoﬁs{,ﬁ+ 7B = TED (80)

where mg; = mass of the beam
f
4 = beam length

frequency of vibration

EI = flexural rigidity

The complex flexural rigidity for these beams is given as
(ED* = (EDo L1 +2*Y] = (EDo [ 1 +Re(Z*)Y +i Im (Z*)Y] (81)

The uncoupled flexural rigidity (EI)o , complex coupling parameter Z* and
geometrical parameter Y have been defined previously. In Equation (80)

(EI) is replaced by (EI)* so that T(£, f) becomes a complex number, T*({, f).
For any particular beam, (EI), and Y are calculated and, for every frequency £
of interest , Re(Z*) and Im(Z*) are calculated as described previously.
Substituting these values into Equation (80),RelT*(4, ] and ImI{T*(*¢, )]

are calculated. The damped transmissibility is

T, @, ) =\{Re[T*(¢, I} + {ImlT*(2, H 1} (82)

The experimental and theoretical transmissibility curves for these two beams
are shown in Figures 116 and 117, respectively. For both beams, the
experimental and theoretical curves agree quite well for the first two resonant
modes. At higher frequencies, however, the agreement is not as good. The
reason for this is not clear, but it can be at least partially explained by the
facts that the test fixture had structural resonances in the frequency range

above 200 Hz and that the clamping device was not a perfect clamp.

Disregarding the results in the higher frequencies, the curves in
Figures 116 and 117 demonstrate that the dynamic response of viscoelastic
shear-damped structural composites can be obtained by replacing the
flexural rigidity in the undamped dynamic response equations by the complex
flexural rigidity and calculating the damped dynamic response as indicated

above,
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SECTION 6: THERMAL CONDUCTIVITY DESIGN STUDIES

The thermal conduction properties of viscoelastic shear-damped
laminated plates is an important design consideration in space vehicle applica-
tions such as solar panels, since a specific minimum value of thermal conducti-
vity is generally required to limit the thermal gradient across the panel. A
thermal conductivity study was conducted to; (1) determine the thermal con-
ductivity properties of laminated elastic and viscoelastic plates as compared
to solid elastic plates; and (2) investigate the possibilities of increasing the
thermal conductivity of laminated elastic and viscoelastic plates without
seriously deteriorating their damping properties. We shall consider the steady-
state heat flow through a laminated plate as shown in Figure 118, For the
purpose of this discussion, it will be assumed that the temperature T1 at
Surface 1 is a given constant and that Surface 2 is in a vacuum and radiating to
a black body at zero absolute temperature. It is further assumed that the
laminates have perfect contact at their interfaces so that no temperature

gradient occurs across the interfaces.

The rate of heat conducted per unit area q can be expressed as [Ref. 12]

_ Dt

where At is the temperature gradient across the laminated plate, H, is the
thickness of the ith laminate and ki is the thermal conductivity of the ith
laminate. In the steady-state, the heat conducted through the laminate must

be radiated from Surface 2. The equation for the heat radiated is [Ref. 12]
4
q=¢€0Ty (84)
where € is the emissivity of Surface 2, 0 is the.Steffan-Boltzman constant
(0.173 X 1078 BTU/hr-ft> °R*), and Ta is the absolute temperature at
Surface 2. Writing At as Ti - Te and combining Equations (83) and (84)

gives

[EHi/ki] €0Tz" + Ta -T1= 0 (85)
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Given Ty, €, and EHi/kl., Equation (85) is solved for Ta . From this
solution, At is calculated and, using Equation (84), q is calculated. For
small temperature gradients At, g is approximately proportional to the

emissivity
g ~€ (OTF) (86)

so that to have high values of q, € should be high. Using Equation (86) with
Equation (83), it can be seen that the temperature gradient across the laminated

plate is approximately proportional to EHi/ki
At~ [ZH/k (€0 TE) (87)

so that to have small values of At, ZHi/ki should be small. This implies
that the thicknesses of the laminates Hi should be small and the thermal
conductivities of the laminates ki should be high. Thermal conductivities of
viscoelastic damping materials are typically much lower than thermal conductiv-
ities of metals. Thermal conductivities for many viscoelastic materials would
fall within the range of 0.02 to 0.2 BTU/hr—ft—qF whereas, for most metals,
the value will be in the range of 5 to 150 BTU/hr-ft-° F.

As an example of thermal conductivity considerations, assume that
the temperature Ti at Surface 1 is 257° F(125° C) and that Surface 2 is
coated so that its emissivity is 0.9. It is desired fo determine the tempera-
ture drop across the laminated plate. The laminated plate to be investigated
is comprised of two 0,063 inch (0.00525 ft) thick 3003-H14 aluminum sheets
separated by a 0.030 inch (0.0025 ft) layer of a polyurethane based adhesive
known commercially as cYBOND® 4000 adhesive. This plate (designated as
the basic specimen) as well as four others, which are essentially the same
except that the viscoelastic layer has additives for improved thermal conduc-
tivity, were provided by American Cyanamid Company. The thermal conductivity
of the aluminum at 70° F is 101.7 BTU/hr-ft-° FLRef. 131, and the thermal
conductivity of CYBOND 4000 adhesive is 0.11 BTU/hr-ft-° F at 200° F, For the
aluminum alone EHi/kl. = 2(0.00525)/101.7 = 0.000103 hr-ft° -° F/BTU and for
the viscoelastic material alone Z)Hi/ki =0.0025/0.11=0.0227 hr-ft*-° F/BTU.
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The total EHi/ki = 0.000103 + 0.0227 = 0,0228 hr-ft* -°F/BTU. Using this
value of ZHy/k;, € =0.9and Ty = 257°F=717°R, At is determined from
Equation (85) to be 8.9° F. In a similar manner the temperature gradient across

the aluminum alone is 0.042° F.

If the temperature gradient is considered to be too high, ZHi/ki for
the viscoelastic material alone could be lowered by either making the Hi
smaller or the ki larger (see below for methods of increasing ki) . Either of
these changes could affect the damping properties of the structure. The
uncoupled shear parameter X, 1is inversely proportional to the viscoelastic
layer thickness HV so that making HV smaller makes X, larger which may
or may not increase the structure loss factor depending on whether the original
value of X was lower or higher than the optimum value (Xo)op' Decreasing
HV will decrease the geometrical parameter Y which, depending on the value

of X,, may or may not decrease the structure loss factor.

The thermal conductivity of the viscoelastic material can be increased
by adding to it other material having a high thermal conductivity. This can be
considered as changing the properties of the viscoelastic material and not as
a change in the structural configuration. Therefore, all of the existing theory
would still be applicable and it would be necessary only to determine the

thermal conductivity and damping properties of the new material.

The four specimens with improved thermal conductivity had the following
additives to the basic viscoelastic layer which was CYBOND 4000 adhesive:
Specimen 1 had a standard aluminum screen (268 openings per inch with
0.010 inch diameter wire) imbedded in the viscoelastic layer; Specimen 2 had
39 percent (by weight) graphite powder, superconductive grade, twenty
micron mesh size, manufactured by Consolidated-Astronautics Inc., Long
Island City, New York; Specimen 3 was the same as Specimen 2 but with the
metal screen of Specimen 1 added also; Specimen 4 was the same as Specimen 2
but with a fibrous metal product (Felt Metal type FM-127 manufactured by Huyck.
Metals Company, Milford, Connecticut) imbedded within the viscoelastic layer.
Thermal conductivity tests were performed by the Stamford Research Laboratories
of the American Cyanamid Company on these specimens. The thermal conductic-

ity values were obtained using a COLORA thermo-conductometer. The test
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samples were disks of laminate, machined to a diameter of 0.7 inches. The
measurements were made at a mean temperature of 200°F. Peel strengths of

these samples were measured at room temperature.

Using the thermal conductivity values of the specimens, the thicknesses
of the individual laminates, and the thermal conductivity of the aluminum, the
thermal conductivity of the damping material was calculated for each of the
specimens. These four specimens, as well as the specimen with no additives
(basic specimen), were tested to determine their structure loss factors in the

same manner as described in Section 5.

All of the specimens were 3 inches wide and 47 inches long except
Specimen 4 which was 30 inches long. For all of the specimens, the thickness
of the viscoelastic layer Hv was maintained at approximately 0.030 inches.
However, since they were not exactly 0.030 inches, a corrected structure loss
factor was calculated assuming HV = 0,03. The frequency range over which
the specimens were tested was approximately 10 - 1000 Hz. In this frequency
range the structure loss factor for these specimens is approximately proportional
to the viscoelastic thickness HV and this is the basis for the corrected structure

loss factor.

The results of all of the measurements and calculations described above
are summarized in the table below; however, the structure loss factor data has
been normalized to the basic specimen's loss factor since it is not the loss
factors of these particular specimens that is significant, but the effect of the
additives to the viscoelastic material on the change in loss factor. Also, for
this frequency range (10 - 1000 Hz) the ratios of the loss factors are approxi-
mately constant so that one number (taken at 100 Hz) is representative of the
whole frequency range.

From this table it can be seen that there is a general trend that, as the
structure thermal conductivity is increased, the structure loss factor and the
peel strength are decreased. For these particular specimens, this same trend
regarding structure loss factor would hold true if the viscoelastic thickness I—IV
were decreased while holding constant the thermal conductivity of the visco-
elastic material kv. For purposes of comparing the effects of changing HV
to the effects of changing kv' consider the basic specimen having values of HV

such that the structure thermal conductivity has values equal to Specimens 1
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SPECIMEN BASIC SPECIMENS WITH IMPROVED
SPECIMEN THERMAL CONDUCTIVITY

1 2 3 4

PROPERTY

STRUCTURE THERMAL
CONDUCTIVITY 0.608 0.90 2.50 | 3.25 | 5.0
(BTU/hr-ft-° F)

DAMPING LAYER THERMAL
CONDUCTIVITY 0.12 0.16 0.41 | 0.60 |1.22
(BTU/hr-ft-" F)

PEEL STRENGTH (lbs/in) 200 40 90 80 20

STRUCTURE LOSS FACTOR
NORMALIZED TO BASIC 1 0.94 0.45 | 0.33 }0.07
SPECIMEN

THICKNESS OF DAMPING

LAYER (in) 0.030 0.027 0.024] 0.028 | 0.039

CORRECTED STRUCTURE
LOSS FACTOR NORMALIZED 1 1.04 0.56 | 0.35 |0.054
TO BASIC SPECIMEN

to 4 respectively, and a constant value of kV = 0.12 BTU/hr-ft-° F. The values

of HV can be calculated from the relation

L tx. T Tk (88)

where HA is the total thickness of the aluminum, kA is the thermal conductiv-
ity of the aluminum, and ks is the structure thermal conductivity as given in
the table above. Again it will be assumed that the structure loss factor for
these specimens in the frequency range 10 to 1000 Hz is proportional to the
thickness of the viscoelastic layer I—lv. The results of the HV and structure

loss factor calculations are presented in the following table.
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THEORETICAL SPECIMEN 1 2 3 4

STRUCTURE THERMAL
CONDUCTIVITY 0.90 2.50 | 3.25 | 5.0
(RTU/hr-ft-° F)

THICKNESS OF DAMPING
LAYER (in) 0.19 {0.0062}0.0047 0.003

STRUCTURE LOSS FACTOR
NORMALIZED TO BASIC 0.63 0.21 { 0.16 | 0.10
SPECIMEN

Comparing these results with those obtained for Specimens 1 to 4 above,
it can be seen that except for Specimen 4, it is better from the structural loss
factor point of view to change kv rather than HV in order to get improved

thermal conductivity.

Returning to the design example given above (i.e., determine &4t,
given that Ty = 717°R and € = 0.9), the quantity EHi/ki for the four
specimens with improved thermal conductivity is equal to 0.016, 0.0063,
0.0043 and 0.0022 hr-ft* °F/BTU, respectively. Using these values with
Equation (85), the temperature gradient across the laminated plate is calculated

to be 5.3, 2.5, 1'.7 and 0.88°F, respectively, for Specimens 1 through 4.

In summary, the thermal conductivity of viscoelastic shear-damped
laminated plates can be increased by adding material of high thermal conduc-
tivity to the viscoelastic material or by reducing the thickness of the visco-
elastic material., Judging from the results described above, however, it
appears that the preferred approach is to add material of high thermal conduc-
tivity to the viscoelastic material since this causes less of a deterioration of

the structure loss factor.

54



SECTION 7: RESULTS AND CONCLUSIONS

The results of the research investigation are:

(1) A general expression for structural loss factor and resonant frequency for
any number of elastic elements separated by layers of viscoelastic material.

(2) Specific equations for structure loss factor and resonant frequency for two-
elastic-element, symmetrical three-elastic-element, unsymmetrical three-
elastic-element, and any number N identical-elastic-laminate structural

composites with viscoelastic shear-damping mechanisms.

(3) Design graphs for the four types of structural composites defined in (2)
above, from which the structure loss factor and resonant frequency ratio

can be read directly without an iteration procedure.

(4) Experimental verification of the theory and design procedures developed to
predict structure loss factor, resonant frequency, and transmissibility of

viscoelastic shear-damped structural composites.

(5) Evaluation of various methods for increasing the thermal conductivity of

viscoelastic shear-damped laminated plates.

Specific conclusions drawn are:

(1) The structure loss factor 1 and resonant frequency ratio fo/fr for two-
and three-elastic-element structural composites are functions of only three
parameters: (1) the viscoelastic material loss factor f; (2) the uncoupled

shear parameter X_; and (3) the geometrical parameter Y. These param-

o’
eters can be calculated in terms of frequency, and the material properties

and cross-section dimensions of the structural composite.

(2) For a given value of viscoelastic material loss factor B and geometrical
parameter Y, there is an optimum uncoupled shear parameter (Xo )o b that
maximizes the structure loss factor. The maximum structure loss factor
nmax is always less than the viscoelastic material loss factor 8 and
approaches B as the geometrical parameter Y approaches infinity.

(3) The forms of the equations for structure loss factor 77 and resonant fre-

quency ratio f0 /£, for two-elastic-element and symmetrical three-elastic-
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(4)

(5)

(6)

(7)

(8)

element structural composites are identical. Therefore, the same design
graphs can be used for the two types of structural composites with the
proper definition of the uncoupled shear parameter X0 and the geometrical

parameter Y.

The equations for structure loss factor 11 and resonant frequency ratio
fo/fr for unsymmetrical three-elastic-element structural composites are
not of the same form as those for two-elastic-element and symmetrical
three-elastic-element structural composites. However, the same design
graphs can be used to obtain good approximations by applying a corrective

multiplier to the uncoupled shear parameter XO .

Structures incorporating either a symmetrical or unsymmetrical arrangement
of three elastic elements will achieve approximately the same maximum
structure loss factor nmax' However, the frequency at which the maxi-
mum loss factor is attained generally will be lower for the unsymmetrical

arrangement of the three elastic elements,

Three-elastic-element and N-identical-elastic laminate structural com-
posites oan attain much higher values of structure loss factor 1 than two-
elastic-element structural composites, because of the considerably higher
values of the geometrical parameter Y involved. While increasing the
number N of identical elastic laminates increases the structure loss
factor 7m, the rate of change of  with N substantially decreases for

values of N greater than approximately 4.

For a given value of uncoupled shear parameter Xo , there is an optimum
value of the viscoelastic material loss factor B that maximizes the struc-
ture loss factor. The optimum value of viscoelastic material loss factor
approaches unity as X0 approaches infinity (frequency approaches zero)
and is greater than unity for all other values of Xo . Consequently, for the
lower modes of vibration of the structural composite, it may be undesirable

for B to have a value greater than unity.

With regard to predicting the structure loss factor and resonant frequency,
the justification has been established for assuming there is an effective

flexural rigidity equal to the real part of the complex flexural rigidity.
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(9)

(10)

Based on a statistical analysis of the experimentally determined values of
structure loss factor and resonant frequency, the theory and design pro-
cedures for calculating these parameters for the four types of structural
composites indicated in (2) above is satisfactory within accepted engineer-

ing accuracy.

The thermal conductivity of viscoelastic shear-damped laminated plates
can be increased by adding material of high thermal conductivity to the
viscoelastic material. However, it appears that this can be done only

at the expense of the structural damping and the peel strength of the

laminated plate.

It is anticipated that the straightforward design procedures presented

in this report will greatly simplify the analysis and design of structural com-

posites with viscoelastic shear-damping mechanisms. Accordingly, the results

of the research investigation should prove useful to structural design engineers,

especially those concerned with controlling the vibration response of air-borne

and aerospace structural assemblies.

57






APPENDIX A

GENERAL LOSS FACTOR EXPRESSION AND SPECIFIC
EQUATIONS FOR TWO-AND THREE-ELASTIC-ELEMENT
VISCOELASTIC SHEAR-DAMPED COMPOSITE STRUCTURES
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APPENDIX A

GENERAL LOSS FACTOR EXPRESSION AND SPECIFIC
EQUATIONS FOR TWO- AND THREE- ELASTIC-ELEMENT
VISCOELASTIC SHEAR-DAMPED COMPOSITE STRUCTURES

The moment equation for a composite beam in bending is [Ref. 2]
M = (ED* 22 = (ED)o 22 + ZF.h (a~1)
3x ° dx i

where

M is the moment

(ETI)* is the complex flexural rigidity

-g—‘(i— is the curvature (assumed the same for all elastic elements)
(EDo = PD(EI)i = sum of the individual elastic element flexural rigidities

Fi is the net extensional force acting at the center of an individual

elastic element

hi is the distance from a reference composite neutral plane (zero

extensional strain)to the center of an individual elastic element

Let di be the distance to the ith elastic element-measured from the
center of the first elastic element. Let 51 be the distance to the ith elastic
element measured from the composite neutral plane for the case where (EI)*
= (EI), (i.e., where the shearing modulus is infinite so that all of the elastic
elements are completely coupled). These dimensions as well as D and 5
are defined by Figure 1, which shows a beam segment and its assumed strain

distribution diagram. From this diagram it can be seen that

N N N
ZF.h, = ZF.d, - DZF, (A-2)
R p i1 ) i

Under the assumption of pure bending

ZF. =0 (A-3)
1



so that

N N
ZF.h, = ZF d, (A-4)
REEREE

The net extensional force on an element is obtained by multiplying the

extensional stiffness by the strain at its center.
F. =K.€, (A-5)

In the strain diagram lbi is the shearing strain of the ith viscoelastic layer
as shown in the Figure 2. From the strain diagram, the strain at the center of
any elastic element is

i
€i=€1 +dia - HV ]Ez e] (A—6)

Using Equations (A-3) and (A-5)

L3
€, === K.€,
1 Kl 2 ii
or, using Equation (A-6)
1 i
e --L v Kk (d.a—H = e.) (A-7)
1 KT i=2 i\i v =2 i
where
N
Kp=Z K
i=1
Defining
Ry = ej/a (A-8)

Equations (A-6) and (A-7) are combined to obtain
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Using the relation
(k. 2 > (2
= (K R ) z ( K )
=2\ Je=2 ¥/ j=af\e=y t

and Equations (A-4), (A-5), and (A-9)

N N 42 Kidi %\;T [i 1
ZF, h z -w—— & Kd.-HXKd.]Z R -
i=1 i i=2 1 1 KT j=p 11 viiTi j=2 KT .

A transfer flexural rigidity is defined as

N 2
(EI)T = Z Kiéi

i=1
and since
5. =d, -8
i i
N R _ N =
(ED) =E) Kidi - 26 2_3 Kidi +§ KT
i=1 i=1
The distance 0 is also defined as
N
Z K.d,
— ii
5 = i=1
Kp

Since di =0, (A-13) can be written as
N ) 1 (N 2
(ED).. = Z K.d, ——(2 Kd)

Toamp it Kp o
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(2-9)

(A-10)

(A-11)

(A-12)

(A-13)

(A-14)

(A-15)




Define

* Ty 3 [ {% R 1 K )R]” (A-16)
z 4. .
(EI)TI N ] P z 1

Equations (A-11), (A-~15), and (A-16) can be combined to give
N

ileihi = (EI)T AR (A-17)

The geometrical parameter is defined as{Ref, 1]

_ (EI)eo _ (EI)T _
=@ " L= o (A-18)
So that
N
ZF.h, = (Elk Z2¥Ya (A-19)
=141

Since %‘}% =a, the expression for the complex flexural rigidity can be obtained
from Equations (A-1) and (A-19) as

ED* = EDo (1 +2°Y) (A-20)

The structural loss factor, 7, is defined as the ratio of the imaginary
part to the real part of the complex flexural rigidity.

_ImUED*] _ Im(z*)Y
"= RCED*T "1 +Re(ZAIY (r-21)

It is necessary to determine the N-1 values of R, in order to calculate
Z*. To determine the RJ. it is necessary to consider the shearing relations of
the viscoelastic layers. First it will be assumed that these layers are purely

elastic and then when the solution is obtained for the elastic case, the
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substitution of a complex modulus will be made for the shearing modulus of

these layers.

The siress-strain relation for any layer is

S

i
G=-% A-22
5, ( )
where
G = shear modulus of elasticity
Si = shearing stress in the ith layer
zp"-xi = shearing strain in the itl’1 layer

For a small section of the beam of length dx and width b, the area is

b dx (A-23)

The shearing force is obtained by considering a section of the beam as shown

in the sketch below

oF,
F, - —>—F.+a—idx
i X

777777 7 X7
\- ith element
\_ .th
i”" layer

_—dx—b—

oF,
Since ZF, =0 and £ F,+5dx =0,
1 1 X
SF,
25—dx =0
X

Therefore, the sum of the forces above
the ith layer must be equal but
opposite in direction to those below
the ith layer, This sum is the
shearing force so that
N oF,

-z —-l—a dx

.. OX

J=1

S, =— 1% — (A-24)

Combining (A-22), (A-23), and (A-24)

)
oGl = - T 5 (A-25)



Now combining Equations (A-5), (A-8), (A-9) and (A-25) and differen-

tiating, assuming that R. is not a function of x

s
=i 17 K2 L=2 ) AN

_l N [ 1 N N . 3w

bGRa——E K d. EK d -H K z RJL T [(E Km)'RL]] 32 (A-26)
Equation (A-26) implies that « = %—;f— has a sinusoidal wave shape. Therefore,
the assumption that Ri is not a function of x implies a sinusoidal wave
shape. For other than sinusoidal wave shapes, Ri must be a function of x,
so that this analysis is strictly applicable only for sinusoidal wave shapes.,
Define a wave number, p; for this differential equation and rearrange the

summations so that¥*

bG.R,

.p2 = _ i
EK.d.—(—— EK.d.) s K. -H (Z: k N2 R.)+ (2 K )R.
j=i 0 3 \&p 21 jm=i 1 y=2 3 =iy Y

N
+{— = [} Z K. A-27
(TL 2[ “m ]>J=1 ( )

Define a shear parameter as

bG

I——-——-
X H KTp2

(A-28)

This shear parameter is not to be a general definition of a shear parameter.
In the analyses that follow a shear parameter is defined for each type of
structural composite. The purpose of defining a shear parameter is to have a
convenient grouping of constants and to non-dimensionalize the equations.

The N-1 equations for the Ri are
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z:K.) s [( K )R ])— K)(’ R.)+ [( K )R.] -XR,
(K e ] m=t M 1L KT =i 2o ) j=itl L=jl’ j i

L N N . (N
- 5 K.)(z K.d.) - (z K.d.) (A-29)
1

When G is made complex, there are 2(N-1) equations for the N-1 Re(Ri) and
the N-1 Im(Ri). Also, G should be written as G* to indicate a complex

quantity.
G* =G '(14iB) (A-30)

where G’ is the real part and B is the ratio of the imaginary part to the
real part (i.e., loss factor) of the complex shear modulus G* of the visco-
elastic layers, and i =+-1 . Equation (A-28) should be rewritten as
*
X' = H_ng.-__z_ (A-31)
v T'p
Now the set of equations represented by Equation (A-29) can be solved
for the real and imaginary parts of the Ri's. With these, the complex number
Z* can be obtained from Equation (A-16). However, the wave number p is in

Equation (A-29) and it is also a function of Z*. The wave number p is related

to the frequency of vibration f by

0 = zang(—E‘:"I’)—r- (A-32)

where w is weight per unit length of the composite structure, g is the
gravitational acceleration constant, and (EI)r is the effective flexural rigidity

of the structure for the resonant mode of vibration being considered.

It is assumed that

(ED); = Re[ED)*]= (EI)o [1 + Re(Z*)Y] (A-33)
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Therefore, an iteration process is required to determine Re(Z*). It is assumed
that (EI), will be bounded between (EI)o (for the completely uncoupled
condition) and (EI)_ (for the completely coupled condition) so that

0 = Re(Z*) = 1 (A-34)

This bounding of Re(Z*) makes the iteration process simpler which can be
important when a large number of simultaneous equations must be solved during

each iteration cycle.

To apply the general analysis to two-elastic-element structures, set

N = 2 in Equation (A-16). Since there is only one di for this structure [ see
Figure 3(a)], let da = d. Now Equation (A -16) becomes

I_IV Kz
Z* = ].—-(E—I)T[Kad(].— K—)Rg] (A~35)
T
From Equation (A-15)
- 2q_k
(]E:I)T =Kz d® (1 KT ) (A-36)
and
KT =K +Ke (A-37)

The shear parameter for this case is defined as

Ki + Kz (b G* )
X* = = (A-38)
K1 Kz va
so that Equation (A-31) becomes
X! = %—Iﬁa— X* (A-39)
T

Substituting (A-39) into (A-29) with N = 2 gives
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Re = 1 (Ti%F) (a-40)

Substituting (A-36) and (A-40) into (A-35) gives

X*

ZF = Tixe

(A-41)

Equations (A-41), (A-38) and (A-30) define the complex coupling parameter 2Z*

for the two~elastic-element case.

To apply the general analysis to three-elastic-element structures,
set N =3 in Equation (A-16) to obtain

H
7k =1 - (EI;’ LS4 (Ka dz +Kad3)Ra+§— [K1d3+Ka(d3 d:a)] %
T T
(A-42)
From Equation (A-15)
(ED) ;= Kadz + K3 da” - -Kl— (K2 da + Ka da)® (A-43)
T
and
KT =Ki+ Kz +Ksa (A-44)

Setting N = 3 in Equation (A-29) gives the following set of simultaneous

equations for Rz and Ra

2
[( Kz;Ka) _(K5+Ks) -X']Ra +[K3 (Ke +Ka) _&]Rs -k Ka do +Ka da
T T

K K., " K. Kp H
v

[ 3(K2+K3) LN +[K3 Ks_X:]Rs =_Eg K2 (ds -da )+ K1 da
T T T

(A-45)

For the symmetrical three-elastic-element case,set Ks =Ki, ds = 2d,

and da =d to agree with the definitions in Figure 3(b). Also, for this case
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the shear parameter is defined as

__ ba* i}
X* = Lo vaz (A-456)

so that Equation (A-31) becomes

7

X'= X* (A-47)

:7<|7~1
'

T

with these substitutions and using Equations (A-43) and (A-44), Equation (A-42)
becomes

H
Z* =1 - —%(Ra + Ra) (A-48)

and the solution of Equation (A-45) is

o _d /1
Re = Re~g;_ (1 - x*) (A-49)
so that
__X*
R (A-50)

Equations (A-50), (A-46) and (A-30) define the complex coupling parameter Z*

for the symmetrical three-elastic-element case.

For the unsymmetrical three-elastic~element case,set Ka=Ki, Ka= K1,

Ki=Kz, da=di1, and dz = dz to agree with the definitions in Figure 3(c). Also

for this case the shear parameter is defined as

X* = ————— A-51
K1 va ( )
So that Equation (A-31) becomes
X' =81y« (A-52)
Kp



With these substitutions and using Equations (A-43) and (A-44), Equation (A-42)
becomes

H, ((cha +1) Rs + [diz +Kia (dha -~ 1) I Ra

* — — —_— -
Z 1 Cb 1+ dfa + (d12 - 1)2 Kla (A 53)

where dis =di/dz and Kiz = K; /Kz

and the solution of Equation (A-45) is

R = % [ 1+ (dyz +1) X*
*TH, |1+ (3+Ka2) X* + (1 +2Ki2) (X%)?
(A-54)
da [ diz -1 +[diz +Ki1z (dhz ~ 1) IX*
Ra == F2]
HV _l+(3+K12)X*+(l+ZK12)(X*)
so that
N Cs +C1 X* ( *) .
Z¥ = G L 1+CaX*+Ca (x%)2] \C2X (A~55)
where
Ci = 1l+di + (diz -1)2 Kiz
Ca = l+(d12 —1)2
Cas = 3+Kea
Cse = 142Kz

Equations {A-55), (A-51) and (A-30)define the complex coupling parameter Z*

for the unsymmetrical three-elastic-element case.

The equations for defining the complex coupling parameter Z* for
the N-equal-laminate case can also be developed from the general analysis,

however, they have been derived independently in Appendix B.
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LOSS FACTOR OF N IDENTICAL-ELASTIC LAMINATE
VISCOELASTIC SHEAR-DAMPED COMPOSITE STRUCTURES
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APPENDIX B
LOSS FACTOR OF N IDENTICAL-ELASTIC LAMINATE
VISCOELASTIC SHEAR-DAMPED COMPOSITE STRUCTURES

Shown below is a sketch of an elemental section of a beam for an odd
number of laminates = N.

DISTANCE FROM
MIDDLE LAYER

beam width = b
o
g%
H,, ) 63
Laminate 2 , r
1 LSS LA a ’]
H Laminate 1 * 4 6,
’ V /S o
- ——ﬁ7 STRAIN
(L
LSS A
r)
o= Ox
fe— dx ———— 8. = al’bj_
i79x

Assume that the strain distribution below the middle laminate is equal but
opposite in sign to that above the middle laminate.
of the middle laminate is zero.

The strain at the center
The strain at the center of any laminate is

given by
i
€ =i(H+H)o - H, jil 9j (B-1)
Define R, = 9 and d =H+H
j T o« v
i
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The extensional force on each laminate at its center is the extensional stiff-

ness times the strain at the center of the laminate. The extensional stiffness K
is

K= EbH (B-3)

where E is modulus of elasticity,

F, = Ke, (B-4)

F

Defining Qi = _IZ_;T« , and using Equations (B-2) and B-4)

HV i
VLS (B-5)

The shear relation for any viscoelastic layer is

n Of
> _a_._i_dx
L, X
j=i

b dx N-1
= n — —— -
n JF,
where % a_>ZJ dx is the sum of all forces on the elements above the visco-
. j=i

elastic layer. It is assumed that the extensional forces in the viscoelastic
layers are zero and,since the sum of all forces on any cross-sectional plane

is zero, the sum of forces on all elastic layers above a viscoelastic layer must
be equal but opposite in sign to the sum of forces on all elastic layers below
that viscoelastic layer. This sum of forces is then the shearing force on that
viscoelastic layer. The quantity "bdx" is the elemental area so that the
numerator of Equation (B-6) is the shearing stress, and l,bi is the shearing
strgin of the layer, The modulus of rigidity G relates shearing stress to

shearing strain. Since the layer is viscoelastic, G will be a complex
number.
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Assuming that RJ. is .not a function of x, Equation (B¥6) can be
differentiated with respect to x to give '

2 *q
bGR;@ = - kd jfi Q5 (B-7)

: 2 . , .
Define a wave number p~ for this equation in «

=g —
Kd I Q,

J=1

or d z I
R, ==L % @ (B-8)
=]

Substituting Equation (B-8) into (B-5) gives

i n

.1 * bG
Q,=i-— Z T Q, ; X =5z (B-9)
i x* =1 K=j K KH_ p~.
Also
i n i n
)IRED QK =2 jQ.+i & Q. (B-10)
j=1 K=j =1 j=i+1 ]
so that Equation (B-9) becomes
1 i n
Q.=i-— | T jo.+i Z Q. (B-11)
1 X*Vj=1" 1 j=ia1 )
The flexural rigidity is implicitly defined by
« n
M = (E)"a = (ED, @ + 2 T idF, (B-12)

i=1
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where M is the total moment acting on the elemental beam section, (EI}* is

the flexural rigidity of the beam, (EI)q
ZzidPi

forces and (EI), @ is the moment caused by the moments on each elastic

elements flexural rigidities,

_ n
element.
i=1

there is an equal moment due to the laminates below the middle laminate.

Substitute (EI), and F;, = kdQ@ into Equation (B-12)

:

height H and modulus of elasticity E,

n

L oQ

o i=]1

2Kd>

(ED* = (ED), [1 + &

For plates with width b,

K =EbH and (EI)o = NE DE—
so that
H
2kd® _ 24 2 v v
The geometrical parameter is
Y = (N°-1)(1 +2v)®
so that
2kd® _ _24Y 6Y Y
EDe  N(N°-1) n(n+1) (2n+1) g i
i=1
Substituting Equation (B-16) into (B-13)
n
ZiQ,
% i=1
(EI)" = (EI)o |1 + Y
> i®
i=1
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is the sum of the individual elastic

is the moment caused by the extensional

) idFi gives the sum of moments above the middle laminate, and

(B-13)

(B-14)

(B-15)

(B-16)

(B-17)



Define

TiQ,
S
Z* = (B-18)

Z i
i1

The Qi will be complex numbers because of the dependence on X*,

Z* is also a complex number and the structure loss factor is given by

Im(zZ*)Y

M =TiRe(Z9)Y (B-19)

The equations for Q, are given by Equation (B-11). When G is made
complex, 2n linear algebraic equations must be solved simultaneously to
obtain the. n unknown values of Re(Qi) and Im(Qi), respectively. However,
it is only necessary to obtain answers for two of these quantities. From

Equation (B-11), let i =n

1 n 1 n
Q, =n-3* § JQJ.+0 =n—>?*.§1Qi (B-20)
j=1 i=1
so that
n
iQ; = X*(n—Qn) (B-21)
i=1
and
* _ 6X*(n-Qnp) _
27 = H(n+1) (2n+)) (B-22)
Equation (B-11) can be rewritten as
i-1 n «
T jQ.+ (@ +X*)Qi+i L Q.=iX (B-23)
j=1 7 j=i+l

When G is complex, write G as G* =G‘(1 +iB) and
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Y =X(1+1B) ; X =go (B-24)
v .

Equation (B-23) can be separated into real and imaginary parts

1
% JRe(Q) +(i+XIRe(Q)+ i L Re(Q)) -XB In(Q) =
j=1 j=i+1
(B-25)
i-1
T 5 ImQ)+i 0 Im( Q)+ 1 % InfQ) + X8 Re(Q,) = X B
j=1 j=i+

Equation (B-25)represents 2n equations. These equations must be solved for
Re{Q ) and Im(Q ). From Equation (B-22)

* _ 6X _ : i - - B-26
2" = ErTEn | - Rel@y)+ BIm(Q) + 1 [Bn-BRe(Q)) Q)3 (B-26)
where i=4-1, G’ (the real part of G*) is the storage modulus,and B
(the ratio of the imaginary to the real part of G¥*) is the loss factor of the
viscoelastic material.

For an even number of laminates the procedure is similar to the above.
Let n= —N-. The following equations will replace Equations (B-11), (B-17),

2
and (B-18), respectively.

Q=1i-1/2 —X*[z G- 1/2)Q + 1= 1/2) z QJ] (B-27)
j=1 j=i+1
= 1
(ED* = (ED,| 1 + 1;1 Y (B-28)
T (- Y2y
i=1

no.
g* ==l (B-29)

n 1,12
z (1i-7/2)
i=1
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Developing these equations similar to the above, Equations (B-25) and (B-26)
will be replaced by the following:
i-1

zlu -1/ 2)Re(Q))+(i- L2 +3)Re(Q))+(i-Y/2) z Re(Q,)-X B Im(Q,)=(i-/2)X
j= j=i+l
) (B-30)
21(1-1/2)Im(Q ) +(i- 1/2+X)Im(Q)+(1—1/2) E 1Im(Qj)+XBRe(Qi)=(i-1/2)XB
J —1+

z*t = n(4n12x —=777 [n-1/2-Re(Q ) +BIm(Q )+ {B(n-1/2)-BRe(Qn)-Im(Q 24 (B-31)
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APPENDIX C
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THREE-ELASTIC-ELEMENT VISCOELASTIC SHEAR-DAMPED
COMPOSITE STRUCTURE
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APPENDIX C
COMPARISON OF THE SYMMETRICAL TO THE UNSYMMETRICAL

THREE-ELASTIC-ELEMENT VISCOELASTIC SHEAR-DAMPED
COMPOSITE STRUCTURE

In this analysis the subscripts s and u stand for symmetrical and
unsymmetrical, respectively. The complex flexural rigidity expression for

beoth the symmetrical and unsymmetrical cases can be put in the form
(ED* = (EDo (1 + Z*Y) (C-1)

where (EI), is the sum of the individual flexural rigidities of the elastic
elements,

Y is the geometrical parameter

*
Z*S = —1—+>£X—* (see Equation A-50)

Z*u= f(X*, Kiz , diz) (see Equation A-55)

_bG’_ Ay
X* = HVP2K1(1+1B) =X(1+B)

From Equation (31) )
X=X, l+ZY;Xo=C(%—);Z=Re(Z*) (C-2)

The four quantities Re(Z*é) , Im(Z*S), Re(Z’;) , Im(Z’I‘J) are given by Equations

(60), (61), (63) and (64), respectively. 1In both cases the loss factor 1 is

n= Im(Z*)Y
1 +Re(Z*)Y (C-3)

First taking limits as X — 0:

Zs -0, Im(Z*S) - BX

- 4 C46Cs
Zu 0, Im(Z"l‘l) - BX
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Hence:

ILim
Xo"’ 0 ‘ns = ﬁYSXO (C-4a)
Lim Cs Cs
; 0 M, ="t BY, Xo (C-4b)
Then taking limits as X - =«
S ’ m S ]. + B X
R o (Cs_Czy_B 1
Z, =1, Im(2%) (04 Cl) 1+8 X
Hence:
Lim _ Bys KXo~ L
Xo—poons— (1+BZ)(1 +YS)A'/—1TY—S ° (c-sa)
Cs _ C_e>
Lim (C‘L Ca BYu
X =TT (1+87)(1+Y)JI+Y, (C-5b)

Equations (C-4) and (C-5) show that when 7 is plotted versus X, on log
paper, there is a low shear parameter asymptote (as Xo-* 0) with a slope of +1
and a high shear parameter asymptote (as X,~ ©) with a slope of -1, The value
of X, at the point where these asymptotes cross each other (Xo)c is

obtained by equating the value of 1 in Equation (C-4) to that in Equation (C-5)
for both the symmetrical and unsymmetrical cases.

1 %
(Xo)cs =[(1+Bz)(1 +Ys) mz] (C~6a)
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_];_(Q_l_ci_l) %
Cs \Cz Cua

(Xo)cu “la+ 83 +Yu) mz | (C-6b)

Dividing Equation (C-6ga) by Equation (C-6b)

() o L [1+Y, T
(XO)cu=[E (cl Ca 1)] [1 +YS] (C-7)

C4C

As an approximate method of evaluating n,s assume Ny =7 if the

geometrical parameter is taken as

(Xo) 1 (Ci Ca
(&)zl; =[c_4 (cla C. 1)F (C-8)

1
In other words, 7, versus X,, multiply the X, scale by [Cl (8: 83 - l)]zto
4

obtain 7, versus X . To determine how much error is involved in this procedure,
first calculate the values of the asymptotes of this approximate method and

compare to the true asymptotes. Subscripting the loss factor n as nij where

i=1L for X5 — 0 asymptote
= Hfor Xo — ® asymptote
j = A for approximate solutions

= E for exact solution

- By
Ma ™ [1_(9@ B 1)]1/2 Xo (C-9a)
C‘4 CE C4

1L+ QL+ /1 +Y

MHA

(C-9b)
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hp= B BY X (C-9¢)

(& - g

= (C-9d)
THE® 1+ QU+ VI+Y
For the asymptotes the per cent error PE is
Ny, -~ M Ce
= A~ EY_ Ci -1 (C-10)
P&, 100( 77E ) 100 [Cs J C1Ca - Cz C, ]

There is no simple expression for the per cent error at intermediate values of
Xo , however, for all cases tried the maximum error & was slightly less and

!

of opposite sign than the errors on the asymptotes & as indicated on the sketch

sketch below,
APPROXIMATE

EXACT

LOSS FACTOR, 7 (log scale)

UNCOUPLED SHEAR PARAMETER, Xo (log scale)

The biggest error occurs when the parameter diz = 1, in which case &

represents a 10.5 per cent error.
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APPENDIX D

EQUIVALENCE OF THE LOSS FACTOR EXPRESSIONS

OF
DiTARANTO [REF. 4] AND UNGAR [3]

DiTaranto's Equation (36) can be written in the form

. SRy (SR SRig) .
p_)\:);_ =B B TMS%S jgl)zlzﬁLE—M)tilg};(leWs) -

[92]

and substituting A = - Ao into DiTaranto's Equation (35) and rearranging

SRi K1 52
%o SBL FE) " (D-2)

n= Py (Bl 1B3>[< R, 1)2+ (S—)il- B)Z]

Using the definitions of Y and X in Ungar's Equation (4.7), the following

substitutions can be made:

SRy = Xp~ (D-3)
Ky 6°
S(B.+Bs) Y (D-4)

Substituting the expressions in Equations (D-1), (D-3) and (D-4) into

Equation (D-2) and rearranging

n = _ BYX(DZ/X@)
1+ (2+Y)X(p72) +(1+Y) (1 + BZ)X° (57/X5)

(b-5)

This equation for loss factor 1 would be identical to Ungar's Equa-
tion (4.7) if p2= Mo . From Ungar's Equation (4.8), the real part of the complex
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flexural rigidity B#* is

+1) + (XB)®
Re(B*) = (B + Ba) [1 + TG Y] (D-6)
Assuming that for viscoelastic sheérfdamped structural composites, there is
an effective flexural rigidity equal to the real part of the complex flexural

rigidity, the wave number p is related to the circular frequency w; by

2

p- = %gl(‘m (D-7)

where P is the mass per unit length of the beam. Using Equation (D-6),
Equation (D-7) can be solved for Pun® as

Pun®= p* (B1 + Ba) [1 * >(<>§X+*i)12) ; §§§§e Y] -

Also substituting Equations (D-3) and (D-4) into (D-1) and solving for puw,”®

gives

Puwn?® = Xg (By + Bs) [1 + X (07 2) IXOY M) +1} + {X(p745)B8}° Y] (D-9)
XE7 ) +117 + X(p¥r.)B}2

Equating Equations (D-8) and (D-9) results in
2
P =X (D-10)

and, therefore, DiTaranto's equation for loss factor is equivalent to Ungar's
if the assumption is made that there is an effective flexural rigidity of shear-
damped structural composites equal to the real part of the complex flexural

rigidity.
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APPENDIX E

- GENERAL LOSS FACTOR EXPRESSION FOR THE SYMMETRICAL THREE-
ELASTIC-ELEMENT VISCOELASTIC SHEAR-DAMPED STRUCTURAL COMPOSITE.

The general expression for the loss factor of an axially uniform
composite beam is given as [Ref, 3]
2 ' g 2 ' ' - 2
PPDoKy IR |°+B)) +ZB8_G!A |P | -

n =
2 A = 2 / 7 = |2
p Z(Kann| +B)) +EGnAn|Pn|

where

p 1is the wave number for the assumed sinusoidal wave
shape of the beam

the subscript n stands for the nth substructure of the

composite structure
o is the extensional loss factor

K is the real part of the extensional stifiness (Klf1 = E;l An' where

Elfl is the real part of Young's Modulus)

B_ is the real part of the flexural rigidity (Brl1 = Eln In' where In is

the moment of inertia)

B is the shear loss factor

n

Gln is the real part of the complex shear modulus

An is the cross-sectional area

ﬁn and T5n are defined by Equation (l.6) of Reference 1 as®

5,=R, ¢ .%, =Po (E-2)

For a time dependent function
y(t) = yo cos(wt +0)

*Quantities with bars over them are phasors.
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The phasor, y, is defined by
y(t) = Re [?elwt]

The phasor y is a complex number

y=yptivyy
so that

. Yy
Re [Y e'® t] = YRE + yI2 cos (wt + tan ™ _—)

Note that the phasor, y , itself is not dependent on time but on the

magnitude and phase of the time dependent function.

In Equation (E-2), ¢ is the angular displacement at a cross-section of
the beam so that,for a beam in pure flexure, %% is- the curvature. It is assumed
that all elastic elements undergo the same curvature %}% . The time dependence
of ¢ 1is taken care of by assuming a sinusoidal time dependence and using

phasors so that

¥ (E-3)
Since all elastic elements have the same curvature, there is no subscript
on %ﬁ— . gn is the phasor for translational displacement, so that the
extensional strain at its neutral axis is

_ ds

fn = ax (E-4)

Finally, 'Zb_n is the phasor for the average shear strain.

It is assumed that

Il

o(x) = Pocos px (B-5)

and, therefore
gn(x) = (gn)° cos px

- _ (E-6)
Y,x) =@ )y cos px
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g

Differentiate Equation (E—G) and use with Equations (E-4) and (E-5) in
Equation (E-2)

-}-i = = f’- = ‘ (E—7)

For the special case of the symmetrical three-elastic-element structure,
only the extensional strain of one elastic element and the shear strain of the
associated viscoelastic element must be considered. Consider the following

sketch of the three-elastic-element beam and the associated strain diagram.

,— ELASTIC ELEMENT
\... VISCOELASTIC ELEMENT

\ \ COMPOSITE NEUTRAL PLANE

NEUTRAL PLANE
OF ELASTIC ELEMENT

— -
STRAIN
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From the geometry of the strain diagram

c=(n+v)32-m (3-32) (E-8)

For small curvatures and for the thickness of the viscoelastic element approxi-
mately constant and equal to -Hv' and also for yn > > Hv' the average

shear strain is approximately equal to Y as shown in the sketch.

Using phasors

Q.Q:i and M=% (E-9)

X dx dAx

Due to the symmetry only the ﬁn for one elastic element and ﬁn for one
viscoelastic element need be considered. Therefore, dropping the subscript n
and using Equations (E-7), (E-8) and (E-9)

R=w+ya - Hv(ﬁ-l) (E-10)

The extensional force on the elastic element is K€ where K is the
extensional stiffness of the elastic element. The net force on a small element

of the elastic element of length, dx, is

d(Ke) _ _
3% dx = FS (E-11)

where Fs = shearing force.

The average shearing stress is obtained by multiplying the average
value of the perimeter of the cross section b by the element, dx. The

stress-strain relation is

s _
bax ~ ¥ (E-12)
Using Equations (E-7) to (E-12)
kR i% +bGY =0 (E-13)
P \9x



The wave number for this equation is p so that

bG
p= = (E-14)

KR
=

Combining Equations (E-10) and (E-14)

1+X*
(E-15)
=_d ( 1 )
P==
HV 1+ X*
bG . 1
where d = y; + yz + H, and X* = ————. When G is a complex
v H_Kp
number it is written as G* which can be expressed as
G* = G'(1+1pB) (E-16)

where B is the loss factor of the viscoelastic material. Now X*, defined as

a complex shear parameter, can be written as

X* = X(1 + iB) (E-17)
and a shear parameter X is defined as

bG (E-18)

Now the quantities

|
(]
Il

[Re(R) 1 + LIm(R F
and (E-19)
(Re(P)F + UIm(P)]®

i
[V
i
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become

X2 (1 +8%2)

Rl®= & g7 v xom

(E-20)
d° 1
Hj (1+X)°+xB8°

\F‘z =

It is assumed that the loss factors of the elastic elements are zero and
that the elastic elements do not shear. Also, it is assumed that the extensional
stiffness and flexural rigidity of the viscoelastic elements are zero. Therefore,

the first term in the numerator of Equation (E-1) is zero.
2 "5 |2 H _ _
p Zan(Knl R I°P+B)=0 (E-21)

The second term in the numerator and in the denominator pertain to the two

viscoelastic elements. They are

-~ ¢ =2 _ / I _
LBnGnAn\ Pn\ =2B8G'Db HV|P| (E-22)
and
’ 5|2 _ / =l2 _
EGnAn! Pn| = 2G'bH,_| P| (E-23)

The first term in the denominator pertains to the three elastic elements. Since
the extensional strain at the neutral plane of the main elastic element is zero,

its value of R is zero and

pQZ(K’nl §n| 2+Br'1) = p° [2Kk|R|? +(ED) ] (E-24)

4

where (EI)O = 2B n

For this structure the geometrical parameter is

_2kd®

Y =D

(E-25)

o]
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Combining Equations (E-17) and (E-20) to (E-25) with Equation (E-1) gives

(E-26)

- BYX
=TT +X+ 1 +B) (L X

This is the same equation as was obtained for the symmetrical three-
elastic-element beam where the elastic elements are separated by layers of
viscoelastic material. The only difference in the two cases is the definition

of b as illustrated below.

[z
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Figure 1. - Elemental section and strain diagram of a beam-comprised

of N elastic elements separated by viscoelastic layers
undergoing flexural vibration
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Figure 2. - Elemental section of {wo elastic elements separated by
: a viscoelastic layer undergoing flexural vibration
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damped structural composites: (3) two-elastic element;
(b} symmetrical three-elastic-element; (c) unsymmetrical
three-elastic element; and (d) N identical-elastic-
laminate



(e) (f)

* . Figure 4. - Typicél two-elastic-element composite structures
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(e) (f)

L  RaZ 7 T

(h)

Figure 5. - Typical symmetrical three-elastic-element structural
composites
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Figure 6. - Typical symmetrical three-elastic-element bar and
tube designs
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Figure 67, - Theoretically predicted and experimentally determined values
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beam having a geometrical parameter Y = 1.55 and a shear
parameter coefficient C = (0.647

164



n

STRUCTURE LOSS FACTOR,

- B E E = 10.2X 10 psi
Ll s Fz = 10.2X 10°psi
w [/ 2 fh = 0.0391 in
P \\ T Hz= 0.0786 in
N Y Hy= 0.0048 in
B = 3in
Es L = 36in
1
1
—— THEORETICAL 1—{-}-
® e EXPERIMENTAL
|
/./-
//
1
//
0.1 >
—
e
0.01
10 100 1000
FREQUENCY (HZ)
Figure 68. -~ Theoretically predicted and experimentally determined values

of structure loss factor of a two-elastic-element free-free
beam having a geometrical parameter Y = 2.33 and a shear
parameter coefficient C = 0.491

165



STRUCTURE LOSS FACTOR, n

(<] .
B—= E F. = 10.2X 10_psi
L T Es = 10.2 X 10°psi
m [ 214, = 0.0618 in
\\\\\ \ ! [ Hz= 0.0611 in
2 Hy= 0.0047 in
= —t B = 3in
Eas L = 36in
|
—— THEORETICAL
® e EXPERIMENTAL
/j/’-
/ o
- [ ]
P T
// ®
/
0.1 ~
0.01
10 100 1000
FREQUENCY (HZ)
Figure 69. - Theoretically predicted and experimentally determined values

of structure loss factor of a two-elastic-element free-free
beam having a geometrical parameter Y = 3.48 and a shear
parameter coefficient C = 0.387

166



n

STRUCTURE LOSS FACTOR,

(=] .

. B8 E E2 = 10.2X 10 psi
L o Ez = 10.2X 10°psi
W 2 Hy = 0.0196 in
f . _ L Hz= 0,1252 in

\\\\\\\ Hy Hy= 0.0052 in

B = 3in
1l ¢ 1 L
THEORETICAL
e e EXPERIMENTAL
0.1
] ] /(/, i
e L
®
//
/,
P
/ °
0.01
10 100 1000
FREQUENCY (HZ)
Figure 70. - Theoretically predicted and experimentally determined values
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beam having a geometrical parameter Y =0.622 and a shear

parameter coefficient C =1.21
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Figure 72. - Theoretically predicted ‘and experimentally determined values
of structure loss factor of a two-elastic-element free-free

beam having a geometrical parameter Y = 4.60 and a shear
parameter coefficient C = 0.123
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Figure 73. - Theoretically predicted and experimentally determined values

of structure loss factor of a two-elastic-element free-free
beam having a geometrical parameter Y = 5,98 and a shear
parameter coefficient C = 0.071
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Figure 74. - Theoretically predicted and experimentally determined values
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beam having a geometrical parameter Y = 4,67 and a shear
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Figure 75. - Theoretically predicted and experimentally determined values

of structure loss factor of a two-elastic-element free-free
beam having a geometrical parameter Y = 2.59 and a shear
parameter coefficient C =1.04
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Figure 78. - Theoretically predicted and experimentally determined values
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Figure 80. - Theoretically predicted and experimentally determined values

of structure loss factor of a two-elastic-element free-free
beam having a geometrical parameter Y = 0.795 and a shear
parameter coefficient C = 3.27
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Figure 81. - Theoretically predicted and experimentally determined values

of structure loss factor of a two-elastic-element free-free
beam having a geometrical parameter Y = 0.464 and a shear
parameter coefficient C = 2.75
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Figure 82. - Theoretically predicted and experimentally determined values
of structure loss factor of a two-elastic-element free-free

beam having a geometrical parameter Y = 0.672 and a shear
parameter coefficient C = 2.06

179



n

STRUCTURE LOSS FACTOR,

: S
8 E, Er = 10.2X 10 psi
Es - Z /-]/— 1|-|I Es = 10.2 X 10° psi.

N\ S H, = 0.0302 in

\\\ Hy Hz= 0.0877 in

Hi= = ey —t 4 Hy= 0.0056 in

/ e B = 3in
R L = 36in
1
— THEORETICAL

e o EXPERIMENTAL - —
[ |

/

//
/F
T
|~
1
//
0-1 e Py — — ﬁ
0.01
10 100 1000
FREQUENCY (HZ)
Figure 83. - Theoretically predicted and experimentally determined values of

structure loss factor of a symmetrical three-elastic-element
free-free beam having a geometrical parameter Y =4.14 and
a shear parameter coefficient C =0.372
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Figure 84. -~ Theoretically predicted and experimentally determined values of

structure loss factor of a symmetrical three-elastic-element
free-free beam having a geometrical parameter Y = 6.51 and
a shear parameter coefficient C = 0.305
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Figure 85. - Theoretically predicted and experimentally determined values of

structure loss factor of a symmetrical three-elastic~element
free-free beam having a geometrical parameter Y = 1.33 and
a shear parameter coefficient C = 1,04
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Figure 86. - Theoretically predicted and experimentally determined values of

structure loss factor of a symmetrical three~elastic~element
free-free beam having a geometrical parameter Y = 6.52 and
a shear parameter coefficient C = 0.135
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Figure 87. - Theoretically predicted and experimentally determined values of

structure loss factor of a symmetrical three-elastic-element
free-free beam having a geometrical parameter Y = 6.78 and

a shear parameter coefficient C = 0.155
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Figure 88. - Theoretically predicted and experimentally determined values of

structure loss factor of a symmetrical three-elastic-element
free-free beam having a geometrical parameter Y =12.2 and
a shear parameter coefficient C = 0.519
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Figure 89. - Theoretically predicted and experimentally determined values oi

structure loss factor of a symmetrical three-elastic-element
free-free beam having a geometrical parameter Y =1.82 and
a shear parameter coefficient C =1.39
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Figure 90. - Theoretically predicted and experimentally determined values of
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structure loss factor of a symmetrical three-elastic-element
free-free beam having a geometrical parameter Y = 2.51 and
a shear parameter coefficient C =1.77
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Figure 91. - Theoretically predicted and experimentally determined values of

structure loss factor of a symmetrical three~elastic-element
free-free beam having a geometrical parameter Y = 5.99 and
a shear parameter coefficient C = 0,635
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Figure 92. - Theoretically predicted and experimentally determined values of

structure loss factor of a symmetrical three-elastic-element
free-free beam having a geometrical parameter Y =1.37 and
a shear parameter coefficient C = 2.51
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Figure 93. - Theoretically predicted and experimentally determined values of

structure loss factor of a symmetrical three-elastic-element
free-free beam having a geometrical parameter Y = 3.32 and
a shear parameter coefficient C = 0,893
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Figure 94. - Theoretically predicted and experimentally determined values of
structure loss factor of a symmetrical three-elastic-element
free-free beam having a geometrical parameter ¥ = 0.316 and
a shear parameter coefficient C = 3.50
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Figure 95. - Theoretically predicted and experimentally determined values of

structure loss factor of a symmetrical three-elastic-element
free-free beam having a geometrical parameter Y = 0.974 and
a shear parameter coefficient C = 0.930
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Figure 96. - Theoretically predicted and experimentally determined values of
structure loss factor of ‘a symmetrical three-elastic-element
free-free beam having a'geometrical parameter Y = 0,347 and
a shear parameter coefficient C = 3.10
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Figure 97. ~ Theoretically predicted and experimentally determined values of

structure loss factor of a symmetrical three-elastic-element

free-free beam having a geometrical parameter Y = 0.594 and

a shear parameter coefficient C =0.671
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Figure 98. - Theoretically predicted and experimentally determined values of

structure loss factor of a symmetrical three-elastic-element
free-free beam having a geometrical parameter ¥ = 0,889 and
a shear parameter coefficient C = 0.925
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Figure 99. - Theoretically predicted and experimentally determined values of

structure loss factor of a symmetrical three-elastic-element
free-free beam having a geometrical parameter Y = 0,610 and
a shear parameter coefficient C = 2,18
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structure loss factor of a symmetrical three-elastic-element
free~-free beam having a geometrical parameter Y =1.17 and
a shear parameter coefficient C =1.06
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Figure 101. -~ Theoretically predicted and experimentally determined values of

structure loss factor of a symmetrical three-elastic-element
free-free beam having a geometrical parameter Y = 0.705 and
a shear parameter coefficient C = 2.38
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Figure 102. - Theoretically predicted and experimentally determined values of

structure loss factor of a symmetrical three-elastic-element
free-free beam having a geometrical parameter Y = 1.42 and
a shear parameter coefficient C = 0.965

199



n

STRUCTURE LOSS FACTOR,

.—A E
1 B, = 10.2 X 10 psi
=3 Fe = 10.2 X 10" psi
N 1 = 0.1244 in
3 = A Ha= 0.125 in
B A = 0.7535 in
K 2 W
= . in
42 — =H
1 L - — o . R . 77._ JUSEY CSNNESU SN S R A
- — THEORETICAL S N S S TUUIIE U S S N
———e e EXPERIMENTAL - [ [~~~ TTTTT
—— b - — - —— e e e — S

e - g — 0 U - —4— 4 — 1

//
0.1 -
e P I
/
L
0.01
10 100 1000

FREQUENCY (HZ)

Figure 103. - Theoretically predicted and experimentally determined values of
structure loss factor of a symmetrical three-elastic-element
free-free beam having a geometrical parameter Y = 1.56 and
a shear parameter coefficient C = 0.748
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Figure 104. - Theoretically predicted and experimentally determined values of
structure loss factor of an unsymmetrical three-elastic-element
free~free beam having a geometrical parameter Y = 4.06 and a
shear parameter coefficient C = 0,353
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Figure 105, - Theoretically predicted and experimentally determined values of
structure loss factor of an unsymmetrical three-elastic-element
free-free beam having a geometrical parameter Y = 4.63 and a
shear parameter coefficient C = 0.352
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Figure 106. ~ Theoretically predicted and experimentally determined values of

structure loss factor of an unsymmetrical three-elastic-element
free-free beam having a geometrical parameter ¥ =1.29 and a
shear parameter coefficient C =1.01
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Figure 107. - Theoretically predicted and experimentally determined values of l":,

structure loss factor of an unsymmetrical three~elastic-element
free-free beam having a geometrical parameter Y = 2.68 and a
shear parameter coefficient C = 1.41
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Figure 108. - Theoretically predicted and experimentally determined values of

structure loss factor of an N identical-elastic-laminate free-
free beam having the number of laminates N = 2, the viscoelastic

thickness parameter V = 0.091, and the shear parameter coefficient
C =0.162
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Figure 109. ~ Theoretically predicted and experimentally determined values of
structure loss factor of an N identical-elastic-iaminate free-
free beam having the number of laminates N = 3, the viscoelastic

thickness parameter V = 0.094, and the shear parameter coefficient
C =0.157
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Figure 110. - Theoretically predicted and experimentally determined values of

structure loss factor of an N identical-elastic-laminate free-
free beam having the number of laminates N = 4, "the viscoelastic

thickness parameter V = 0.098, and the shear parameter coefficient
C =0.152
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Figure 111, - Comparison of the experimental and theoretical values of loss

factor for the composite structural beam specimens, where (%)
refers to two-elastic-element structures, (e) refers to symmetrical
three-elastic-element structures, (o) refers to unsymmetrical three-
elastic-element structures, and {x) refers to N identical-elastic-
laminate structures
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Figure 113, - Comparison of the standardized probability density of
tn(ng/my), shown as vertical bars, with that of a

normal distribution, shown as the continuous curve
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Figure 114, - Comparison of the standardized probability density of

in [(fr)e/(fr)t] ., shown as vertical bars, with that of a
normal distribution, shown as the continuous curve
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Figure 115. - Schematic diagram of a cantilever beam test configuration
for steady-state vibration excitation
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Figure 116. - Comparison of theoretical and experimental transmissibility
curves of a two-elastic-element structural composite damp-
free beam

213



TRANSMISSIBILITY

100

g0 T T A B +—— > 11
B——— Ei = 10.2 X 10° psi
B /——JHI Es = 10.2X 106221
N =51 Hy = 0.0183 in -
a H, Hz = 0.1243 in
= S —t iH' Hy, = 0.0052 in 7
LE 9 B = 3in
'THEORETICALN
10
EXPERIMENTAL i
OI\I
N /
] SN
/ "
2 A
| ' —\
10 100

Figure 117.

FREQUENCY (Hz)

- Comparison of theoretical and experimental transmissibility
curves of a symmetrical three-elastic-element clamp-~free
structural composite beam

214

1000



693{-&0 26 —— 6961 ‘AoI8uET-VSYN

GI¢

qIN

™ L AMINATE

SURFACE | SURFACE 2
——— AN \ - - \Y
/
RN 7 x/
————— \/\ // \/
\A\ ki \y
q g
N q /
%”% % Y
—— ——— < S
-—-I Hi |-
EMISSIVITY COATING
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